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Abstract
Biomanufacturing is moving toward digital manufacturing with 
increased application of process analytical technology (PAT) and 
continuous manufacturing. This article discusses strategies and 
components of the digital biomanufacturing approach, including 
mechanistic models and their validation, automation of the 
construction of models by data analytics and machine learning to 
improve efficiency and improve model quality, and real-time feedback 
control of critical quality attributes (CQAs).
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Introduction
Among biologics, monoclonal antibodies (mAbs) are the highest 
selling class, particularly because of their specific action and reduced 
immunogenicity.1 As mAbs facilitate better targeted immunological 
approaches of treating many diseases including cancer, the market 
demand is projected to have continual growth for the foreseeable 
future, except for the temporary reduction in market due to supply 
and demand failures associated with the COVID-19 outbreak.2 Much 
of the market needs will come from mAbs which are currently 
under regulatory review, which includes drugs for diseases such as 
Alzheimer’s that afflict much larger populations than most current 
mAbs.3 As such, biopharmaceutical manufacturing processes will need 
to be developed to produce new mAbs for this growing market. This 
article describes methods and strategies being developed to shorten 
the time required to develop an efficient and reliable biomanufacturing 
process for mAbs. Although the focus of this article is on mAbs, most 
of the methods and strategies also apply to other biological drug 
products, as well as for small-molecule pharmaceuticals.
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Process Analytical Technology and 
Quality by Design
The development of effi  cient and reliable biopharmaceutical 
manufacturing processes relies on Process Analytical Technology 
(PAT) which is “a system for designing, analyzing, and controlling 
manufacturing through the timely measurements (i.e., during 
processing) of critical quality and performance attributes of raw and in-
process materials and processes, with the goal of ensuring fi nal product 
quality.”4 Measuring critical quality attributes (CQAs) on-line leads to 
increased process understanding of multivariable interactions and 
dynamics and is used to construct process models.1 The process models 
range from data-driven to fi rst principles based on the degree of process 
understanding (Figure 1).5 Product quality can be consistently improved 
with advanced control algorithms enabled by real-time process 
measurements and process models from PAT,1 which implements 
Quality by Design (QbD) promoted by regulatory agencies.6

Continuous and 
Digital Manufacturing
In addition to collecting data on-line and constructing models, 
batch-to-continuous transition of biomanufacturing is increasingly 
being developed and applied to improve product quality and 
reduce manufacturing costs (Figure 2).7-9 Several academic groups 
and companies have demonstrated the direct connection of all 
upstream and downstream operations to form a continuous or semi-
continuous biopharmaceutical manufacturing facility.10-12 Continuous 

biomanufacturing necessitates a plant-wide control strategy to 
handle the propagation of impurities and other disturbances caused 
by tight integration of continuous unit operations,13 which have been 
demonstrated for small-molecule pharmaceuticals.14-16

The above strategies and technologies ultimately lead 
biomanufacturing to digital manufacturing, which is an integrated 
approach to manufacturing centered around a computer system. 
Digital manufacturing is enhanced by using modern system 
engineering tools.1,11 Modeling and simulation provide increased 
mechanistic fi delity, better empirical approaches, and automated 
decision making. Process optimization enables drug- and patient-
specifi c manufacturing and reduces experimental costs. Process 
control deals with process variations and enables fully automated 
systems to minimize operator error. Synergy between these tools 
enhances the potential benefi ts to digital biomanufacturing.1,11

Laboratory-scale continuous biomanufacturing unit operations and 
facilities are ideal for evaluating and validating the development of 
digital manufacturing, as well as for associated tools for data analytics, 
modeling, control, and quality assurance.

Process Data Analytics and 
Machine Learning
Well-validated mathematical models are unavailable for much of 
the important phenomena and interactions in biopharmaceutical 
manufacturing, which means that much of the models for design of safe 
operating regions (“design spaces”) require the use of data analytics 
(DA). The number of available data analytics methods and software 
packages has grown exponentially over the last decade, which are 
collectively called machine learning in the data science community. 
Machine learning methods have been demonstrated to signifi cantly 
improve both model accuracy and reliability for both identifying and 
building relationships between critical process parameters and critical 
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Figure 1. Knowledge pyramid for model-based decision making. 
Higher layers in the pyramid correspond to greater knowledge, 

more informed and better reliability of decision making, and 
lower requirements for regulatory oversight. “First-principles” 

refers to models involving rather complete mechanistic 
understanding, e.g., chemical reaction stoichiometry and 

kinetics; constitutive relationships that de� ne the kinetics of 
mass, heat, and momentum transfer; and mass, energy, and 

momentum conservation equations. Adapted from Ref. 5.

Figure 2. High-level process � ow diagrams for (a) batch and 
(b) continuous manufacturing of monoclonal antibodies. In 

batch processing, each batch unit operation runs to completion 
and then has its output sent to the next batch unit operation. 

Batch operation has hold steps consisting of the entire quantity 
of material in between each unit operation, with all material 

generated in the bioreactor staying in the system for a long time 
before making it through the polishing steps. The continuous 

operation can potentially include small surge tanks or single-use 
bags for priming and managing � ow between unit operations. 

Figure courtesy of Wiley-Blackwell.12
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quality attributes for an industrial mAb manufacturing process.17,18

Experience in the application of surface response methodology, partial 
least squares, and principal component analysis does not directly 
translate over to many of the modern machine learning (ML) tools, 
which typically require a high degree of expertise to apply eff ectively. 
One of the challenges today is how to work through the large number 
of available methods and tools for each specifi c dataset to fi gure out 
how to construct the most accurate and reliable models.

A smart process data analytics software has been developed to assist 
manufacturers in selecting the best DA/ML tools for a biomanufacturing 
dataset based on its specifi c characteristics and on expert domain 
knowledge.17-19 The user is able to specify their needs and input 
special data properties for special handling of the data. For automated 
model construction, a rigorous nested cross-validation procedure is 
implemented, which provides accurate estimates of model accuracy. 
This software is built in Python with a user-friendly interface. The user 
provides data sets and information asked in the software, and then the 
fi nal model and model performance are provided from the software.

Looking into more details into how this software works, its fi rst step 
is to apply tools to automatically interrogate the dataset to ascertain 
its characteristics such as nonlinearity, dynamics, and multicollinearity. 
The extent of correlation and nonlinearity is quantifi ed by matrix 
correlation analysis and nonlinearity quantifi cation. The extent 
of dynamics is quantifi ed using serial cross-correlation and 
autocorrelation. Then, based on the degree of characteristics, a best-
in-class data analytics tool is selected from the data analytics triangle 
(Figure 3). The data analytics triangle is constructed based on literature 
review, theoretical analysis, and case studies and maps modeling 
techniques to data characteristics. Lastly, the fi nal model is constructed 
using a fully automated rigorous cross-validation procedure. The cross-
validation involves splitting the data into training, validation, and 

testing. The training and validation datasets are used to fi t the model 
and tune hyperparameters in the modeling procedure, respectively. 
The test dataset is used to provide an unbiased evaluation of the 
model accuracy. Model bias is minimized by using a nested cross 
validation procedure, in which many splits of the original data into the 
three sets are used in the model construction and evaluation.

Nearly all of the DA/ML methods in Figure 3 are well established in 
the literature, with software implementations available in Python, 
R, or Matlab. The new methods are algebraic learning via elastic 
net (ALVEN) and its extension to modeling dynamic relationships 
(dynamic ALVEN),20 which combine machine learning with expert 
knowledge in the form of algebraic relationships that commonly 
arise in biological and chemical processes. These methods balance 
model complexity and prediction accuracy through a two-step feature 
selection procedure, to produce an interpretable model useful for 
process applications while avoiding overfi tting.

Closing
This article describes strategies and technologies for an integrated 
digital approach for the manufacturing of monoclonal antibodies, 
which includes process analytical technology and Quality by Design, 
continuous manufacturing, fi rst-principles modeling, process data 
analytics and machine learning, and unit operation and plant-wide 
control. Process measurements from PAT are used for development 
and validation of fi rst-principles and data-driven models for 
biopharmaceutical manufacturing processes, to provide insights 
into impurity rejection and multivariable interactions and dynamics 
between unit operations. These models enable the design of advanced 
control algorithms to manufacture the highest quality products.
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Figure 3. The data analytics triangle for predictive modeling with 
a single response variable. The modeling techniques are mapped 
to three major model regression characteristics. ALVEN, algebraic 
learning via elastic net; CVA, canonical variate analysis; DALVEN, 
dynamic ALVEN; MOESP, multivariable output error state space; 

PLS, partial least squares; RF, random forest; RNN, recurrent 
neural network; RR, ridge regression; SVR, support vector 

regression. Adapted from Ref. 19, which describes the individual 
algorithms in the � gure in detail.
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