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Abstract

The methylotrophic yeast Pichia pastoris is widely used as a microbial host for

recombinant protein production. Bioreactor models for P. pastoris can inform

understanding of cellular metabolism and can be used to optimize bioreactor

operation. This article constructs an extensive macroscopic bioreactor model

for P. pastoris which describes substrates, biomass, total protein, other medium

components, and off‐gas components. Species and elemental balances are in-

troduced to describe uptake and evolution rates for medium components and

off‐gas components. Additionally, a pH model is constructed using an overall

charge balance, acid/base equilibria, and activity coefficients to describe pro-

duction of recombinant protein and precipitation of medium components. The

extent of run‐to‐run variability is modeled by distributions of a subset of the

model parameters, which are estimated using the maximum likelihood method.

Model prediction from the extensive macroscopic bioreactor model well de-

scribes experimental data with different operating conditions. The probability

distributions of the model predictions quantified from the parameter dis-

tribution are quantifiably consistent with the run‐to‐run variability observed in

the experimental data. The uncertainty description in this macroscopic bior-

eactor model identifies the model parameters that have large variability and

provides guidance as to which aspects of cellular metabolism should be the

focus of additional experimental studies. The model for medium components

with pH and precipitation can be used for improving chemically defined medium

by minimizing the amount of components needed while meeting cellular

requirements.
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1 | INTRODUCTION

The methylotrophic yeast Pichia pastoris is widely used as a microbial

host for recombinant protein production. This system has the ad-

vantages of (i) tight gene regulation and high product titers with

methanol‐induced alcohol oxidase (AOX1) promoter, (ii) growth on

simple media at high cell density, (iii) eukaryotic posttranslational

modification such as glycosylation and disulfide bond formation, and (iv)

simplified downstream purification with foreign protein secretion and

low amount of naturally secreted proteins (Cereghino & Cregg, 2000).

Bioreactor modeling can inform understanding of cellular

metabolism—including aspects of growth kinetics, productivity, media

consumption, and metabolite secretion—and can be used to optimize

bioreactor operations. Models for bioreactors are developed with dif-

ferent levels of detail and complexity depending on their purpose. With

simple mathematical formulations and low computational costs, macro-

scopic models can produce useful predictions of bioreactor operations

while being suitable for parameter estimation and real‐time model pre-

dictive control (Craven et al., 2014; Ramaswamy et al., 2005).

Although P. pastoris has been used to produce numerous re-

combinant proteins, limited macroscopic models have been published,

with their main focus being on the substrate consumption, growth, and

production (Barrigon et al., 2015; Çelik et al., 2009; Jahic et al., 2002; Ren

et al., 2003). More comprehensive macroscopic models are necessary for

P. pastoris to develop further understanding of cellular metabolism and

optimization of bioreactor operations. In this study, an extensive mac-

roscopic model for a bioreactor was constructed for substrates (glycerol

and methanol), biomass, total protein, important medium components,

and off‐gas components (oxygen and carbon dioxide). The modeling of

the medium components is facilitated by using a chemically defined

medium (Matthews et al., 2018), which also reduces run‐to‐run variability

and simplifies purification in the downstream processes. Species and

elemental balances are introduced to describe uptake and evolution rates

for medium components and off‐gas components. Additionally, a pH

model was constructed using an overall charge balance, acid/base equi-

libria, and activity coefficients to describe the dependence of re-

combinant protein production on pH, precipitation of medium

components, and carbon dioxide to carbonate species reactions.

For a set of bioreactors operated in fed‐batch with P. pastoris, var-

iations among individual runs are observed, especially with respect to

volumetric productivity for an exemplar recombinant subunit vaccine

component for rotavirus. These variations are observed even with highly

similar target operating conditions with controlled temperature, pH, and

dissolved oxygen and reproducible substrate consumption and growth

rates (Plantz et al., 2006; Surribas et al., 2006; Velez‐Suberbie et al.,

2020). These observations suggest that the experimental data for the

bioreactors are not describable by a mathematical model with a single set

of parameters. An additional consideration is that any macroscopic model

does not describe all of the complex biology that occurs in the bioreactor;

such models effectively lump multiple biological pathways into some of

the model parameters. In this study, the extent of run‐to‐run variability is

modeled by using distributions for a subset of the model parameters, in

which each run is associated with a single set of model parameters. The

model parameters that have been observed in the literature to have high

reproducibility from run to run including in different laboratories (sub-

strate consumption and growth rate parameters) are set to literature

values, and the distributions of the uncertain parameters in the macro-

scopic bioreactor model are estimated using the maximum likelihood

method.

2 | MATERIALS AND METHODS

2.1 | Fed‐batch fermentation

Fermentation was carried out with P. pastoris (Komagataella phaffii

NRRL Y‐11430) secreting a P[4] or a P[8] serotype of a non‐
replicating rotavirus VP8‐derived subunit vaccine as previously re-

ported (Velez‐Suberbie et al., 2020). Fermenter operating conditions

were 25°C, 25% dissolved oxygen tension (DOT), and pH 4.00 or

6.50 ± 0.15 (Table 1) controlled with 10% (v/v) ammonium hydro-

xide. In some fermentation, a pH pulse was implemented at the end

of methanol adaptation (~30 h), which reduced pH to 3.00 ± 0.15,

held low for ~4 h, and then ramped pH back up to original set point.

Harvest was performed 3 h after the end of the pH pulse.

2.2 | Analytical methods

Biomass and protein concentration were measured as previously

reported (Velez‐Suberbie et al., 2020). Metabolite concentration in

fermentation supernatant were determined off‐line using (1) Dionex

UltiMate 3000 ultrahigh performance liquid chromatography with

refractive index detector (Thermo Fisher Scientific) with Aminex

HPX‐87H column (Bio‐Rad) for glycerol and methanol, (2) CuBiAn

HT2 70 photometric biochemistry analyser (Optocell Technology) for

phosphate, and (3) BioProfile FLEX (Nova Biomedical) for potassium

and ammonium.

3 | MODEL DEVELOPMENT

Bioreactors have been traditionally modeled as stirred‐tank reactors.

The material balance equation is

TABLE 1 Fermentation reference, pH, and methanol feed rate

Fermentation ID pH

Methanol feed rate (ml/L per

L of initial volume)

RDM 9.1, 9.2, & 10.2 4.0 7.6

RDM 9.4 & 10.4 6.5 7.6

RDM 9.3, 10.1, & 10.3 6.5–3.0–6.5 7.6

RDM 11.2 & 11.4 4.0 11.0

RDM 14.2 & 14.3 6.5–3.0–6.5 11.0

RDM 14.4 6.5–3.0–6.5 13.0
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where y is the concentration in the reactor, VL is the liquid medium

volume, F is the media flow rate, the subscripts in and out referring

to inlet and outlet streams, δ is the separation factor at the outlet,

and ry is the volumetric reaction rate (Enfors, 2011).

The developed macroscopic bioreactor model is unstructured and

nonsegregated, that is, the cell population is treated as single compart-

ment and all cells are considered to be identical. For fed‐batch operation,

differential balances for the concentrations of biomass X , substrate S

(subscript g refers to glycerol and m refers to methanol), total protein P
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where μ is the specific growth rate, qS is the specific substrate

consumption rate, qP is the specific total protein production rate,

qC is the specific carbon dioxide evolution rate, qNX is the specific

nitrogen uptake rate, CS is the concentration of carbon in the sub-

strate, CP is the concentration of carbon in the protein, CC is the

concentration of carbon in the carbon dioxide, and NP is the con-

centration of nitrogen in the protein.

3.1 | Cellular metabolism

The specific growth rate is modeled to be proportional to the specific

substrate consumption rate, which is most commonly described with

the Monod model (Monod, 1949),

μ = − =
+

q q Y q q
S

K S
( ) , ,S m S S

S
em ,max (4)

where qm is the maintenance coefficient, Yem is the biomass yield

coefficient for exclusive maintenance, qS, max is the maximum specific

consumption rate, and KS is the saturation constant.

The specific total protein production rate is the sum of the

specific recombinant protein production rate and the specific host

cell protein production rate, which are both related to the specific

growth rate. The pH of the medium also affects the total protein

concentration. Low pH conditions are often applied to reduce de-

gradation of protein by inactivating proteases. However, low extra-

cellular pH also affects the organization of the cell wall (Kapteyn

et al., 2001), which may have impact on the protein secretion. For

modeling this effect of the pH, it is assumed that there is an enzyme

responsible for the secretion of the proteins and it is only active in its

original deprotonated form →← ++ +E: EH E H
Ka E,

where Ka E, is the acid

dissociation constant for the enzyme. Then the active portion of total

enzymes is included in the specific total production rate,

α μ
=

+−
q

10 1
,P

P
Kp pHa E,

(5)

where αP is the growth‐associated proportional coefficient.

Elemental composition of P. pastoris has been reported from

several past studies. Carnicer et al. (2009) reported the biomass

composition in terms of macromolecular and chemical elements

under different oxygenation conditions, as well as under re-

combinant protein (antibody fragment, Fab) producing and non-

producing conditions. The study showed that the control strain

resulted in fairly constant protein and carbohydrate levels under

all oxygenation conditions but a Fab‐expressing strain resulted in

significant increase in protein and decrease in carbohydrate

content as the oxygen availability decreased. At the same time,

extracellular and intracellular Fab content increased significantly

when reducing the oxygen availability. These results suggest that

recombinant protein production correlates with the variation in

macromolecular and chemical compositions.

Therefore, concentrations of intracellular carbon and nitrogen

were included as the states in the model and modeled based on the

mass balance of biomass. The specific carbon uptake rate for ana-

bolism and specific nitrogen uptake rate are modeled to be propor-

tional to the specific growth rate,

α μ α μ= − = =q q C q C q, ,C S S C C C N NX X (6)

where αC and αN are the growth‐associated proportional coefficients.

The concentration of carbon and nitrogen in the protein were calculated

from the amino acid sequences of the host cell proteins of P. pastoris and

the recombinant proteins.

3.2 | Medium components

Molar concentration of RDM components M include total phos-

phate species PT , total sulfate species ST , total ammonium species

NT , total glutamine species QT , total arginine species RT , po-

tassium +[K ], magnesium +[Mg ]2 , calcium +[Ca ]2 , transition metals
+[TM ]2 , and chloride −[Cl ]:

= − − −
M
t

F
V

M M q X r
d

d
( ) ,

L
M P M

in
in , (7)

where qM is the specific uptake rate and rP M, is the precipitation (and

dissolution) rate for the related species.

Ammonium, glutamine, and arginine species are nitrogen sources

that can be utilized simultaneously by P. pastoris (Matthews et al.,

2018). Nitrogen regulation in P. pastoris is simplified as

=
+ +

q
n M

N Q R
q

2 4
,M

M

T T T
NX (8)

where nM is the number of nitrogen atoms. For the components

without nitrogen, the specific uptake rate is modeled assuming

constant elemental composition,

μ=q M ,M X (9)
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where MX is the concentration of intracellular element (phosphorous

for phosphate and sulfur for sulfate). This assumption is consistent

with constant sulfur and ash composition under different conditions

(Carnicer et al., 2009).

3.3 | pH and precipitation

Precipitation caused by medium components is one of several common

problems in cell culture media. Here a pH model with precipitation is

developed with the medium components. Acid and base species in the

medium are described as … = ∈
+{ } AH A , , An i

z n
i
z

ia i
a i a i a i

,
, , , A, where A is

the family of sets of the acid and base species A , the subscripts i refer

to each acid and its conjugate base(s), na is the number of potential

protons to donate, and za is the charge when all potential protons are

donated. Remaining species in the medium are described as ∈ SSi
zs i, ,

where S is the set of remaining species. The pH model is based on the

total charge balance and acid/base equilibria:
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whereKa is the acid dissociation constant and γz is the activity coefficient

for z‐charged ions. Activity is applied instead of concentration in the acid/

base equilibria due to the high ionic strength I in the fermentation con-

ditions, and is modeled by the Davis equation (Davies, 1962):
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where the parameter A depends on temperature T and dielectric

constant ϵ as = × ϵ − ∕A T1.82 10 ( )6 3 2 and ≈A 0.51 for water at 25°C.

The precipitate species are described as
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where P is the set of the precipitate species, K sp is the solubility

product constant, np is the number of different ion species forming

the precipitate, and s is the stoichiometric coefficient. Then the

concentration of precipitates and the precipitation (and dissolution)

rate can be described as
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where Q sp is the reaction quotient and k is the reaction rate constant.

3.4 | Gas phase

The remaining reactor volume comprises a volume of the homo-

geneously dispersed bubbles and volume of the headspace gas above

the liquid medium. These two gas phases can be modeled as stirred

tanks connected in series, but combining the gas together as a sole

gas phase is a reasonable approximation. Gas transfer between

headspace gas and medium is negligible compared to gas transfer

between bubbles and medium because of order‐of‐magnitude smal-

ler surface area, resulting in negligible difference between headspace

gas and bubbles (de Jonge et al., 2014). Then for the gas phase,

differential balances for mole fraction of oxygen O and carbon

dioxide C including water W are
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where x is the mole fraction, the subscripts i refer to the compo-

nents, Q is the gas flow rate, VG is the total gas volume, p is the

pressure, T is the temperature, and i is the gas transfer rate.

Oxygen transfer is especially important for system with P.

pastoris because of the high oxygen uptake rate at high densities of

cells. The bioreactor is designed to diffuse oxygen from sparged

bubbles into the bulk liquid. The oxygen transfer rate (OTR) can be

calculated from the differential balance for the concentration of

dissolved oxygen (DO) and a scaling analysis that shows that terms

with DO can be neglected due to the low solubility of oxygen in

water: ≈ q XOTR O , where qO is the specific oxygen uptake rate.

Carbon dioxide produced from the cell metabolism has a net flux in

the opposite direction of oxygen, from the bulk liquid to sparged bubbles.

The carbon dioxide transfer rate (CTR) can be calculated from the dif-

ferential balance for the concentration of dissolved carbon dioxide (DC):

= − + + − −q X r
t

F
V

CTR
dDC

d
( DC DC ),C C

L

in
in (18)

where rC is the reaction rate from dissolved carbon

dioxide to carbonate species described by the chemical reac-

tions: + →← + →←
− −CO H O H CO , CO OH HCO2 2 2 3 2 3

The approximation that was used for oxygen is not applicable for

carbon dioxide because of its high solubility in water. DC will be

generally higher than the saturated concentration DC * since the

concentration gradient is needed for carbon dioxide transfer. Con-

sidering that CTR and OTR are usually in the same order of magni-

tude (Royce & Thornhill, 1991),

− −
k a
k a

( DC DC *)~ ( DO* DO ),L O

L C
(19)

where k aL is the volumetric mass transfer coefficient. Because the

values of k aL O and k aL C are of the same order of magnitude (Royce &

Thornhill, 1991), scaling analysis similar to what was applied to the

oxygen shows that DC is close to its saturated value:

≈ = ∕px HDC DC* C C , where H is the Henry's law constant. Then
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For oxygen uptake rate, Jahic et al. (2002) proposed a metabolic

flux model based on the division of metabolic flux into anabolism and

energy metabolism. A modification of their model to have a more

detailed carbon balance and reaction network is
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where ∕YO S, an is the oxygen yield coefficient for anabolism, and

∕YO S, en is the oxygen yield coefficient for energy metabolism. The

metabolic fluxes of glycerol and methanol are simplified in the re-

action networks (see Figure 1), which also specify the oxygen yield

coefficients.

3.5 | Maximum likelihood estimation and
sensitivity analysis

Most of the parameters in the bioreactor model are taken from the

literature; this section describes the procedure for the estimation of

the model parameters that were fit to experimental data. Maximum

likelihood (ML) estimation is commonly applied in literature assum-

ing that there exists constant parameter set θ for all experiments

(Ashyraliyev et al., 2009). Then the model equation for the system

can be determined by

θ= + ϵ = + ϵ ϵ = …y x F u N V i d( ; ) , ~ (0, ), 1, , ,i i m i m m mi i i i
(22)

where y is the vector of measured states, x is the vector of states,

u is the vector of inputs, ϵm is the vector of measurement error

which is a white noise vector with covariance matrix Vm, the

subscript i refers to each experimental data set, and d is number

of experimental data sets. Then the maximum likelihood estimate

is given as

θ θ θ
θ
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In this study, however, the parameters were estimated assuming

that there exists a distribution of parameter sets between different

experiments:
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where θi is constant parameter set for each of the experiment. By

linearization of the model, the covariance matrix of the measured

states can be expressed as
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and then the maximum likelihood estimation can be formulated as
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Sensitivities of the states with respect to the parameters are

computed via sensitivity equations:
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4 | RESULTS AND DISCUSSION

4.1 | pH and precipitation

Precipitation caused by medium components is a common problem in

cell culture media and was observed in bioreactor runs when base

ammonium hydroxide was added for pH adjustment before the in-

oculation. Concentration measurements of media components be-

fore and after pH adjustment indicated that the ammonium and

phosphate ions are included in the precipitates (data not shown). This

result suggests magnesium ammonium phosphate (MAP,MgNH PO4 4)

as the candidate precipitates.

For the pH model with precipitation, pH of the rich defined medium

was measured as base 10% (v/v) ammonium hydroxide was added

(Figure 2). Model prediction of pH was shifted to match initial pH data to

deal with run‐to‐run variability of measured initial pH. The acid dis-

sociation constants were taken from the literature (Kern, 1960; Lide,

2004). The solubility product of MAP was estimated with least squares

( =Kp 12.24sp ) and the estimated value reasonably agreed with values

from the literature (Aage et al., 1997; Ohlinger et al., 1998; Snoeyink &

Jenkins, 1980). The differences may be due to the different activity

models and considered chemical species. The pH measurement data of

rich defined medium at different base concentrations were well de-

scribed by the pH model with precipitation, with a root‐mean‐squared
error (RMSE) of 0.042 which is within the accuracy of the pH mea-

surement (Rosemount Analytical, 2010). It was also observed in the ex-

periment that the precipitation occurred when the volume of base added

was 0.3% to 0.4% of volume of the rich defined medium, which also

agreed with the model prediction.

(a)

(b)

F IGURE 1 (a) Glycerol metabolism and (b) methanol metabolism
of Pichia pastoris. AOX, alcohol oxidase; CAT, catalase; GAP,
glyceraldehyde‐3‐phosphate [Color figure can be viewed at
wileyonlinelibrary.com]
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(a) (b)

(c) (d)

(e)

F IGURE 2 (a) Model predictions with precipitation (solid line) and without precipitation (dashed line) and experimental data
(open circles) for pH as base 10% (v/v) ammonium hydroxide is added to the rich defined medium. Model prediction with precipitation
(solid lines) and experimental data (dotted lines) during the pH adjustment before the inoculation for (b) RDM 9 ( ∕ =N N 1.12T T, in ,in

ref ),
(c) RDM 10 ( ∕ =N N 1.04T T, in ,in

ref ), (d) RDM 11 ( ∕ =N N 1.04T T, in ,in
ref ), and (e) RDM 14 ( ∕ =N N 0.87T T, in ,in

ref ), where NT , in is the corrected
concentration of base ammonium hydroxide and NT , in

ref is the intended concentration [Color figure can be viewed at
wileyonlinelibrary.com]
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Base ammonium hydroxide used for pH control in the experi-

ments can have a different concentration than was intended. Lab

solutions that are purchased in a concentrated form usually report

lower bounds of concentration in the label (e.g., ≥25%). Further-

more, ammonia gas liberates over time, which decreases the con-

centration. To take this phenomenon into account, concentration of

base ammonium hydroxide was corrected based on the pH mea-

surements before inoculation (Figure 2). The concentration of the

base used for pH control was initially higher than the intended

concentration but the concentration decreased over time as am-

monia gas evaporated. The estimated reaction rate constant for

precipitation was k = 1.3 × 1011M−2 s−1.

4.2 | Cellular metabolism

Measurements of biomass and total protein concentration were

used to validate substrate consumption, growth, and production

in the macroscopic bioreactor model. Bioreactor model predic-

tions are compared with experimental data for the biomass and

total protein concentration in Figure 3. Parameters required for

the growth and substrate consumption were taken from the lit-

erature (Jahic et al., 2002). The biomass concentration data with

different operating conditions (pH) and different strains (pro-

ducts) were well described by the model with the reported

parameters, with an RMSE of 3.1 g/L, which is within 5% to 10%

of the measured biomass.

The parameters for the total protein production estimated with

maximum likelihood using pH values from the measurements were

α α= ± ∕ = ± ∕ = ±K23.2 1.4 mg g, 69.0 15.3 mg g, p 3.42 0.01P g P m a E, , , . The

total protein production during the glycerol period was consistent with

most of the proteins produced being host cell proteins, with a RMSE of

49 mg/L, which is within 5% to 8% of the measured total protein pro-

duction. Run‐to‐run variability of total protein production occurred

mainly during the methanol period, which is associated with re-

combinant protein production (RMSE of 250mg/L) and may be due to

unmeasured cell properties such as viability and copy number variation.

The pH dependence of the total protein production is evident

from total protein concentration for different pH conditions during

the glycerol period and the trend of total protein concentration after

(a) (b)

(c)

F IGURE 3 Model predictions (solid lines) and experimental data (open circles) of (a) biomass and (b) total protein concentration, and (c) pH
measurement data of Pichia pastoris. Vertical dotted lines represent times when the operation mode changed [Color figure can be viewed at
wileyonlinelibrary.com]
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pH shift during the methanol period. This dependence suggests that

lowering pH for inactivating proteases can negatively affect the

quantitative productivity of recombinant proteins.

4.3 | Medium components

The metabolite concentrations in fermentation supernatant were

measured in bioreactor runs to validate the modeling of media

consumption. The bioreactor model predictions are compared with

experimental measurements of the concentrations of ammonium,

phosphate, and potassium ions in Figure 4. For ammonium and

phosphate, data with low pH conditions were used because pre-

cipitation occurs at higher pH conditions. Elemental compositions of

biomass were estimated using the maximum likelihood method, and

estimated values reasonably agreed with values from the literature

(Carnicer et al., 2009; Tavasoli et al., 2017; van Eunen et al., 2010)

(Table 2). The parameter for specific nitrogen uptake rate was also

estimated: α = ± ∕0.133 0.007 g gN m, .

The potassium and phosphate data were well described by the

model (RMSE of 6.5 and 4.0 mM, respectively), which demonstrates

that constant elemental composition was a reasonable assumption.

Ammonium data have more run‐to‐run variability compared to other

medium components (RMSE of 13 mM). Run‐to‐run variability of

ammonium consumption occurred mainly during the methanol period

while the concentration of intracellular nitrogen is increasing due to

recombinant protein production.

(a) (b)

(c) (d)

F IGURE 4 Model predictions (solid lines) and experimental data (open circles) of (a) phosphate, (b) potassium, and (c) ammonium
concentration and (d) model predictions of nitrogen composition of biomass. Vertical dotted lines represent times when the operation mode
changed [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 2 Maximum likelihood estimates and literature‐reported
values of parameters for elemental compositions of biomass

Parameters This study

Carnicer

et al. (2009)

Tavasoli

et al. (2017)

van Eunen

et al. (2010)

CX ,0 (mg/g) 413 ± 16 443 ± 22 446

NX ,0 (mg/g) 90.4 ± 1.5 75 ± 11 79

PX (mg/g) 21.8 ± 1.2 25.7 20 ± 1

KX (mg/g) 20.0 ± 1.8 29.2 28 ± 2
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4.4 | Gas phase

Lastly, off‐gas data were used to validate the modeling of oxygen

uptake and carbon dioxide evolution. Figure 5 compares bioreactor

model predictions with experimental measurements of off‐gas com-

positions of oxygen and carbon dioxide. The Henry's law constant

and carbonate species reaction constants were taken from the lit-

erature (Kern, 1960; Sander, 2015). Inlet air and oxygen were dry

( ≈x 0W , in ) and the mole fraction of water vapor in the reactor was

assumed to be =x 0.01W based on the steady‐state off‐gas oxygen

concentration before inoculation. Carbon composition of biomass

during glycerol period was estimated using maximum likelihood and

the estimated values reasonably agreed with values from the lit-

erature (Carnicer et al., 2009; Tavasoli et al., 2017) (Table 2). The

parameter for specific carbon uptake rate for anabolism was also

estimated: α = ± ∕0.594 0.013 g gC m, .

The off‐gas data of oxygen and carbon dioxide were well de-

scribed by the model (RMSE of 0.76% and 0.73%, respectively),

which demonstrates that metabolic flux model for the oxygen uptake

rate is a reasonable simplification. A sudden increase in both oxygen

uptake rate and carbon dioxide evolution rate were observed in all

experiments at the beginning of the methanol induction, however,

causing disagreement between model prediction and experimental

data during that time window. This finding suggests that the actual

cell metabolism was more focused on energy metabolism than what

was predicted from the model and may be due to dramatic changes

in cell metabolism for adaptation to methanol.

4.5 | Parameter distributions and sensitivity
analysis

The developed macroscopic bioreactor model with pH and pre-

cipitation was implemented and compared with the entire experi-

mental data set of bioreactor runs (Figure 6). Elemental compositions

of biomass for the remaining medium components were taken from

the literature (van Eunen et al., 2010). Including precipitation into

the macroscopic bioreactor model resulted in good agreement of

model predictions and experimental data of medium components and

pH. Model prediction for medium components with pH and pre-

cipitation can be applied for improving the chemically defined med-

ium by minimizing the concentration of components needed while

meeting cellular requirements, which is important for extended op-

erations in perfusion mode. For example, phosphate was the limiting

component in the current medium for bioreactor run RDM 14.2. The

model predictions that extended fed‐batch operation would result in

phosphate depletion at ±60.5 2.5 hr. However, if monopotassium

phosphate (KH PO2 4) in the medium was increased from 12 to 15 g/L,

the PO4 concentration would shift up to the dashed line in Figure 6,

and the model predicts that phosphate depletion would be delayed

to ±71.2 3.2 hr.

Furthermore, the effects of the parameter distributions esti-

mated by the maximum likelihood method on the predicted variables

were quantified. Their probability distribution functions were con-

structed by Monte Carlo simulation with 10,000 random parameter

sets sampled from the parameter distributions (Figure 7). The

probability distribution functions capture the run‐to‐run variability in

experimental data, especially for total protein and ammonium

concentration.

Sensitivity analysis identifies key parameters for the states

of interest in the macroscopic bioreactor model (Figure 8). The

total protein concentration was sensitive to αP of each substrate

during the period of its consumption, while being sensitive to

Kp a E, only when operating in low pH conditions. For medium

components and off‐gas components, key parameters are those

related to elemental composition of biomass. Medium compo-

nents are also sensitive to inlet acid and base concentrations

because of their high concentration. This result indicates that the

acid and base concentrations should be accurately identified for

the model application.

5 | CONCLUSION

This article constructs an extensive macroscopic bioreactor model

for P. pastoris producing recombinant proteins in defined medium.

The model describes substrates, biomass, total protein, other med-

ium components, and off‐gas components based on species and

elemental balances. The model also describes pH based on overall

charge balance, acid/base equilibria, and activity coefficients to de-

scribe total protein production and precipitation of medium com-

ponents. The distributions of uncertain model parameters were

estimated using the maximum likelihood method to model the extent

of run‐to‐run variability.

Model predictions from the extensive macroscopic bioreactor

model well describe experimental data with different operating

conditions. The pH dependence of the total protein production

suggests that the low pH condition for inactivating proteases may

decrease the quantitative productivity of recombinant proteins. The

model predicts that the specific total production rate drops from pH

6.5 by 21% to pH 4, 45% to pH 3.5, and 72% to pH 3. Elemental

compositions of biomass are identified as the most sensitive para-

meters of the medium and off‐gas components. Precipitation of

medium components is also critical for accurate prediction of con-

centration of medium components and pH. The model of medium

components with pH and precipitation can be used for optimizing a

chemically defined medium, especially for extended operations in

perfusion mode. The metabolic flux model well describes oxygen

uptake rate and carbon dioxide evolution rate and provides an un-

derstanding of the state of cell metabolism from the off‐gas mea-

surement data.

The probability distribution of model predictions from the parameter

distribution quantifies the run‐to‐run variability observed in the experi-

mental data. The uncertainty description in extensive macroscopic bior-

eactor model identifies large variability of the model parameters related

to the total protein production and nitrogen consumption during the
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(a)

(b)

(c)

F IGURE 5 (a) Model predictions (solid lines) and experimental data (dotted lines) of the off‐gas composition of oxygen and (b) carbon

dioxide and (c) model predictions of carbon composition of biomass. Bioreactor runs RDM 9 are shown for demonstration. Vertical dotted lines
represent times when the operation mode changed [Color figure can be viewed at wileyonlinelibrary.com]
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(a) (b)

(c) (d)

(e) (f)

(g)

F IGURE 6 Model predictions (solid lines) and experimental data (open circles or dotted lines) of bioreactor runs RDM 14. The
vertical dotted lines represent times when the operation mode changed. The additional dashed line in the PO4 plot shows the model prediction
if monopotassium phosphate (KH PO2 4) in the medium was increased from 12 to 15 g/L [Color figure can be viewed at wileyonlinelibrary.com]
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F IGURE 7 Probability distribution functions from Monte Carlo simulations (solid lines) and experimental data (open circles or crosses) of
bioreactor run RDM 14.2 [Color figure can be viewed at wileyonlinelibrary.com]
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methanol phase. This provides guidance as to which aspects of cellular

metabolism should be the focus of additional experimental studies.
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