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a b s t r a c t 

Microbioreactors are a promising technology to accelerate biologic drug development. In aerobic cellular 

respiration, a potential limit to the productivity of such systems is the transport of oxygen from an ex- 

ternal gas to the most oxygen-deficient cells, and the potential for excessive spatially localized dissolved 

oxygen which can result in cellular damage. This article analytically solves a mechanistic model for the 

spatiotemporal transport of oxygen through a gas-permeable membrane to the cells within a microbiore- 

actor. An analytical solution to the partial differential equations for oxygen transport is derived using the 

finite Fourier transform method. A parameter-adaptive extended Kalman filter is shown to produce highly 

accurate estimates of the oxygen uptake rate of the cells, with some fluctuation in estimates of the spe- 

cific cell growth rate and the specific oxygen uptake rate. The estimates are fed to a model predictive 

control formulation that improves the spatial control of dissolved oxygen during cell growth by more 

than 30% compared to a PID controller. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Biologic drugs are products derived from biological organisms 

or treating or preventing diseases. With continued growth of bio- 

ogic drugs, microscale technologies for high-speed process devel- 

pment is a trend in process development for biopharamaceutical 

anufacturing ( Hong et al., 2018; 2020 ). 

Conventional bench-scale stirred-tank bioreactors are well es- 

ablished for bioprocess development but are expensive in terms 

f labor and cost, especially when operated in parallel for the op- 

imization of media and determination of optimal operating proto- 

ols during startup and transition to perfusion mode. Microbiore- 

ctor systems with embedded sensors for control and automation 

ave been proposed as a more efficient alternative ( Kim and Lee, 

998; Kostov et al., 2001 ). The primary fast dynamics that need to 

e controlled in a bioreactor in general and a microbioreactor in 

articular are associated with the dissolved oxygen (aka DO) con- 

entration. DO concentration either too high or too low causes cell 

amage or death ( Baez and Shiloach, 2014 ). 

The conventional method of bubble sparging is not feasible for 

eration at the small volumes in microbioreactors, where bubbles 

ould cause clogging and flow disruptions. An alternative aera- 
ion method that is feasible at small volumes is to select one or 
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ore walls of the microbioreactor as a gas-permeable membrane 

or oxygen to diffuse through from an oxygen source ( Zanzotto 

t al., 2004; Szita et al., 2005; Zhang et al., 2006; Lee et al., 2006 ).

his surface aeration provides oxygen to the cells but creates an 

xygen concentration gradient in the microbioreactor. Due to phys- 

cal limitations with implementing the sensors, the DO concentra- 

ion is only measured at the bioreactor wall opposite of the gas- 

ermeable membrane. A data-driven model cannot be used to de- 

ermine the oxygen concentration profile in the bioreactor, since 

hat profile is not measurable in this system. This article employs a 

echanistic model, involving conservation equations, kinetics, and 

iffusion, which is then used to estimate the oxygen concentration 

radient from the variables that are measurable. The first main ob- 

ective of this article is to analytically solve and validate a mecha- 

istic model for DO concentration in the microbioreactor. 

In industrial practice, the pH, temperature, and DO concentra- 

ion within bioreactors are typically controlled using Proportional- 

ntegral-Derivative (PID) controllers. Many academic studies have 

een published on the open- and closed-loop control of bioreac- 

ors, which include gain-scheduled, nonlinear-inverse-based, singu- 

ar, adaptive, and model predictive control systems ( Banga et al., 

005; Rani and Rao, 1999 ). Nonlinear model predictive control 

NMPC) is of interest due to its ability to explicitly address dy- 

amic nonlinearities and constraints. Among NMPC schemes, one 

f the earlier proposals for bioreactor control employed a nonlin- 

ar autoregressive with exogenous input model ( Hong et al., 1996 ). 

ater, an adaptive NMPC strategy was evaluated in simulations 

https://doi.org/10.1016/j.compchemeng.2021.107255
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Fig. 1. Simplified model for a microbioreactor with flat form factor from 

Lee et al. (2006) . 
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or the maximization of productivity of a continuous fermenter 

 Saha et al., 1999 ). Numerous later studies considered NMPC with 

tate estimation. For example, one study investigated the poten- 

ial of using NMPC with an unscented Kalman filter to control 

tarvation-induced cell death in Chinese hamster ovary (CHO) cells 

n a bioreactor ( Simon and Karim, 2002 ). Another study consid- 

red NMPC with an extended Kalman filter (EKF) for control of ni- 

rogen and oxygen concentrations for a biological nitrogen-removal 

rocess, to make the effluent organic concentrations below regula- 

ory limits ( El Bahja et al., 2009 ). Very recently, an NMPC imple-

entation that includes dynamic flux balance models was investi- 

ated for fed-batch fermentation ( Chang et al., 2016 ). Also, NMPC 

as been experimentally implemented in recent years, including a 

tudy that demonstrated increased biomass and lipid productivity 

n a microalgal photobioreactor system ( Yoo et al., 2016 ). The sec- 

nd main objective of this article is to propose and evaluate an 

MPC algorithm for the control of DO concentration throughout 

he cell-containing spatial domain within the microbioreactor. The 

lgorithm employs a parameter-adaptive EKF algorithm for simul- 

aneous parameter and state estimation. The spatial variation of 

he DO within the microbioreactor results in different considera- 

ions than reported in the literature for stirred-tank bioreactors. 

This article derives the analytical solution of a distributed pa- 

ameter model for the oxygen concentration profile within the mi- 

robioreactor ( Section 3 ), compares that model with traditional 

umped parameter model ( Section 4 ), and proposes a NMPC algo- 

ithm for oxygen control within the microbioreactor ( Section 5 ). 

. Theory and methods 

.1. Mechanistic model 

The specific microbioreactor system that served as the basis for 

he mathematical model is the device invented by Lee et al. (2006) . 

he microbioreactor is designed to have a flat form factor, fab- 

icated from polydimethylsiloxane (PDMS, Dow Corning, Sylgard 

84). For modeling purposes, the physical system is simplified by 

pproximating the effect of the peristaltic oxygenating mixer with 

n effective diffusion coefficient ( Fig. 1 ) ( Sagues and Horsthemke, 

986; Rosenbluth et al., 1987 ). In Fig. 1 , the depth L of the growth

ell is 500 microns and the thickness d of the PDMS membrane is 

0 microns. The conservation equation for the DO ( Lee et al., 2006 )

s 

∂C 

∂t 
= 

∂ 

∂z 

(
D (z) 

∂C 

∂z 

)
− R V (z, t) , −d < z < L, z � = 0 , (1)

here C is the DO concentration, the first term on the right-hand 

ide is the one-dimensional transport in the z direction character- 
2 
zed by an effective DO diffusion coefficient D (z) , and the second 

erm is the net rate of consumption by the cells, R V (z, t) . The latter

wo expressions are given by 

 ( z ) = 

{
D p , −d < z < 0 , 

ηD w 

, 0 < z < L, 
(2) 

 V ( z, t ) = 

{
0 , −d < z < 0 , 

OUR ( t ) , 0 < z < L, 
(3) 

here the effective diffusion coefficient of DO in PDMS is D p = 

 . 14 × 10 −5 cm 

2 / s ( Lee et al., 2006; Lu et al., 2001 ), the molecu-

ar diffusion coefficient of DO in aqueous solution is D w 

= 2 . 19 ×
0 −5 cm 

2 / s ( St-Denis and Fell, 1971 ), an experimentally deter- 

ined diffusion enhancement factor is η = 13 , and the oxygen up- 

ake rate (OUR) term is introduced from the cellular metabolism. 

he diffusion enhancement factor accounts for the effects of vibra- 

ions used by the device to increase the rate of transport of DO in 

he microbioreactor. 

The boundary condition for the PDMS membrane comes from 

quilibrium with the oxygen source, 

(−d, t) = K p C 
∗(t) , (4) 

here the PDMS/gas partition coefficient is K p = 

 . 9 mM / 100% Air Sat ( Lee et al., 2006; Lu et al., 2001; Merkel

t al., 20 0 0 ) and C ∗(t) is the oxygen concentration of the oxygen

ource. For convenience, the air saturation is used as the unit for 

he oxygen concentration of the oxygen source, with 100% Air Sat 

eaning the oxygen concentration of air with an oxygen partial 

ressure of 0.21 atm. The boundary condition at the end of the 

rowth well comes from the imperviousness of the oxygen sensor, 

∂C 

∂z 
(L, t) = 0 . (5) 

t the interface, the DO concentrations are in equilibrium and the 

O flux is continuous, 

1 

K p 
C (0 

−, t) = 

1 

K w 

C (0 

+ , t) , (6) 

 p 
∂C 

∂z 
(0 

−, t) = ηD w 

∂C 

∂z 
(0 

+ , t) , (7) 

here the water/gas partition coefficient is K w 

= 

 . 27 mM / 100% Air Sat ( Douglas, 1964 ). Alternatively, (6) could 

e written in terms of the water/PDMS partition coefficient, 

 = K w 

/K p = 0 . 3 . 

.2. Finite Fourier transform analysis 

The transient analysis of the mass diffusion through multilay- 

red medium with finite geometry can be solved with method of 

nite Fourier transform (FFT) ( Ramkrishna and Amundson, 1974 ). 

he FFT method expands the solution using eigenfunctions ob- 

ained from associated self-adjoint operators. 

Consider the specific Sturm-Liouville operator needed for the 

roblem, 

 x = 

1 

w (x ) 

d 

d x 

(
p(x ) 

d 

d x 

)
, x ∈ (0 , 1) , (8) 

here p > 0 and w > 0 for x ∈ (0 , 1) and p, d p/ d x, and w are con-

inuous for x ∈ [0 , 1] except at a number of intermediate points 

 1 , x 2 , . . . , x n . The inner product can be defined to be 

f, g 
〉
= 

∫ 1 

w (x ) f (x ) g(x ) d x. (9) 

0 
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hen f and g satisfy homogeneous boundary conditions at the 

ndpoints, it can be shown that 

L x f , g 
〉
−
〈
f , L x g 

〉
= 

n ∑ 

i =1 

[
p 

(
d f 

d x 
g − f 

d g 

d x 

)∣∣∣∣x = x + i 

x = x −
i 

. (10) 

hus operator L x is self-adjoint when 

f (x −
i 
) = f (x + 

i 
) , (11) 

p(x −
i 
) 

d f 

d x 
(x −

i 
) = p(x + 

i 
) 

d f 

d x 
(x + 

i 
) , (12) 

re satisfied for both f and g. In other words, the conditions of 

ontinuity of f and p d f 
d x 

, in addition to the homogeneous boundary 

onditions at the endpoints, are sufficient for the specific Sturm- 

iouville operator with finitely discontinuous coefficients to be 

elf-adjoint. 

.3. Mass transfer coefficient derivation 

Conventional bioreactors transport oxygen in sparged bubbles 

nto mixed liquid containing the cells. This process is typically 

odeled with a two-film model that assumes the liquid film con- 

rols the overall oxygen transfer rate, 

d C 

d t 
= k L a ( K w 

C ∗( t ) − C ) − OUR ( t ) , (13) 

here C is the concentration in the bulk liquid and k L a is the volu-

etric mass transfer coefficient, which is the product of the liquid 

ass transfer coefficient and specific surface area. 

This k L a model has been applied to the microbioreactors by ap- 

roximating the bulk concentration with concentration measured 

t the oxygen sensor ( Zanzotto et al., 2004; Lee et al., 2006 ). By

omparison with the model developed from (1) , the value of k L a 

an be calculated from 

 L a = 

1 
L 

[
−D 

∂C 
∂z 

∣∣
z=0 

K w 

C ∗( t ) − C ( L, t ) 
. (14) 

sing the quasi-steady state assumption, (1) can be directly solved 

o give a linear concentration profile in the PDMS membrane and 

uadratic concentration profile in the growth well: 

 ( z, t ) = 

{ 

K p C 
∗( t ) − OUR ( t ) 

L ( d+ z ) 
D p 

, −d < z < 0 , 

K w C 
∗( t ) − OUR ( t ) 

(
KLd 
D p 

+ 

L 2 −( L −z ) 
2 

2 ηD w 

)
, 0 < z < L. 

(15) 

ith this result, the quasi-steady state value of k L a is 

 L a = 

1 

KLd 
D p 

+ 

L 2 

2 ηD w 

= 0 . 108 s −1 . (16) 

.4. NMPC formulation 

The NMPC algorithm repeatedly solves an online optimization 

ased on a nonlinear process model to determine the control in- 

uts ( Henson and Seborg, 1997; Allgöwer and Zheng, 20 0 0; Nagy 

nd Braatz, 2010 ). At each sampling time, the model is updated 

ith measurements and estimated states and the control inputs 

re determined over a finite prediction horizon by objective func- 

ion. After the control inputs are implemented for that sampling 

ime, the same steps are repeated by shifting the prediction hori- 

on. 

The discrete-time formulation of the optimal control problem in 

MPC is usually 

min 

 (t k ) , ... ,u (t k + N p −1 ) 
H(x (t k ) , u (t k ) , . . . , u (t k + N p −1 ) ; θ ) (17)
3 
ith 

 (t k +1 ) = f (x (t k ) , u (t k ) ; θ ) , (18)

 (t k ) = g(x (t k ) ; θ ) , (19) 

 (t k ) = 

ˆ x (t k ) , (20) 

 (x (t k ) , u (t k ) , . . . , u (t k + N p −1 ) ; θ ) ≤ 0 , (21)

here H is the objective function, t k is the time at sampling time 

, N p is the prediction horizon, x is the vector of states, u is the

ector of inputs, θ is the vector of parameters, y is the vector of 

easured variables used to compute estimated states ˆ x , and h is 

he vector of functions describing the constraints for the system. 

The states can be estimated with parameter-adaptive EKF to in- 

rease the robustness in performance of the NMPC algorithm by 

stimating some parameters together with the states ( Maybeck, 

982; Valappil and Georgakis, 20 0 0; Nagy and Braatz, 2010 ). Let 
′ ⊆ θ be the vector of estimated parameters and θ ′′ ≡ θ\ θ ′ be 

he vector for remaining parameters. Then the vector of augmented 

tates is X = [ x θ ′ ] 	 and the time update for the augmented states

s from 

ˆ 
 

−(t k ) = 

[
f ( ̂  X (t k −1 ) , u (t k −1 ) ; θ ′′ ) θ ′ (t k −1 ) 

]	 . (22)

he time update of the state covariance is from 

 

−(t k ) = F (t k −1 ) P (t k −1 ) F 
	 (t k −1 ) + Q (t k ) , (23)

 (t k −1 ) = 

[
∂ f ( ̂ X (t k −1 ) ,u (t k −1 ) ;θ ′′ ) 

∂x 

∂ f ( ̂ X (t k −1 ) ,u (t k −1 ) ;θ ′′ ) 
∂θ ′ 

0 I 

]
, (24) 

here F is the Jacobian given by (24) and Q is the process noise 

ovariance matrix. Assuming that the process noise is mostly from 

he parameter uncertainty, Q is given by 

 (t k ) = 

[
S θ ′′ (t k −1 ) V θ ′′ S 	 θ ′′ (t k −1 ) 0 

0 V θ ′ 

]
, (25) 

 θ ′′ (t k −1 ) = 

∂ f ( ̂  X (t k −1 ) , u (t k −1 ) ; ˆ θ ′′ ) 
∂θ ′′ , (26) 

here V θ ′ and V θ ′′ are the parameter covariance matrices, S θ ′′ is 

he Jacobian given by (26) , and 

ˆ θ ′′ is the nominal parameter vector. 

he Kalman gain K is computed from 

 (t k ) = P 

−(t k ) G (t k )( G (t k ) P 

−(t k ) G 

	 (t k ) + R ) −1 , (27)

 (t k ) = 

[
∂g( ̂ X −(t k ) ;θ ′′ ) 

∂x 
∂g( ̂ X −(t k ) ;θ ′′ ) 

∂θ ′ 
]
, (28) 

here G is the Jacobian given by (28) and R is the measurement 

oise covariance matrix. Finally, the measurement update is com- 

uted from 

ˆ 
 (t k ) = 

ˆ X 

−(t k ) + K (t k )(y (t k ) − g( ̂  X 

−(t k ) ; θ ′′ )) , (29)

 (t k ) = ( I − K (t k ) G (t k ) ) P 

−(t k ) . (30) 

. Analytical solution of the microbioreactor model 

For convenience, new variables are introduced for the length 

nd concentration, 

 = 

z + d 

L + d 
, � = 

C 

K(x ) 
. (31) 

ith the location of the interface expressed as γ = 

d 
L + d , K(x ) is 

he partition coefficient for PDMS/gas (0 < x < γ ) or water/gas 
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γ < x < 1) . The model equations with boundary and interface 

onditions are rewritten in terms of new variables as 

∂�

∂t 
= 

1 

K(x ) 

∂ 

∂x 

(
K(x ) ̃  D (x ) 

∂�

∂x 

)
+ 

˜ R V (x, t) , (32) 

˜ 
 ( x ) = 

{ 

˜ D p = 

D p 

( L + d ) 2 , 0 < x < γ , 

˜ D w 

= 

ηD w 

( L + d ) 2 , γ < x < 1 , 
(33) 

˜ 
 V ( x, t ) = 

{
0 , 0 < x < γ , 
OUR ( t ) 

K w 
, γ < x < 1 , 

(34) 

(0 , t) = C ∗(t ) , 
∂�

∂x 
(1 , t ) = 0 , (35)

(γ −, t) = �(γ + , t) , K p ̃  D p 
∂�

∂x 
(γ −, t) = K w ̃

 D w 

∂�

∂x 
(γ + , t) . 

(36) 

The analytical solution to this partial differential equation with 

wo spatial domains, 

(x, t) = 

∞ ∑ 

n =1 

�n (t)�n (x ) , (37) 

an be derived for this problem by application of the FFT method 

 Ramkrishna and Amundson, 1974 ), where 

n ( x ) = 

{ 

A p,n sin 

λn x √ 

˜ D p 
, 0 < x < γ , 

A w,n sin 

λn x √ 

˜ D w 
+ B w,n cos λn x √ 

˜ D w 
, γ < x < 1 , 

(38) 

 w,n = 

1 √ 

K p N λn 

, B w,n = − M λn , 21 

M λn , 22 

1 √ 

K p N λn 

, A p,n = 

∣∣M λn 

∣∣
M λn , 22 

1 √ 

K p N λn 

, 

(39) 

n ( t ) = 

(
�n ( 0 ) + B n 

∫ t 

0 
C ∗( τ ) e λ

2 
n τ d τ − R n 

∫ t 

0 
OUR ( τ ) e λ

2 
n τ d τ

)
e −λ2 

n t , 

(40)

or n = 1 , 2 , . . . (see Supplementary Material for details). 

. Dissolved oxygen concentration profiles 

This section examines the concentration profiles obtained from 

he FFT model to determine the applicability of the k L a model 

o the microbioreactor. The k L a value for the model is taken 

rom (16) , which matches the dynamic gassing measurements from 

ee et al. (2006) . To determine the concentration profiles from the 

FT model and k L a models, the oxygen concentration in the oxygen 

ource ( C ∗(t) ) and the oxygen uptake rate (OUR) must be speci- 

ed. The oxygen source is from the reservoir that mixes input pure 

xygen and air. These input gases are fed to the reservoir with con- 

tant overall flow rate but with different ratio determined by the 

ontroller. The concentration of the oxygen source can be modeled 

y 

d C ∗

d t 
= 

F 

V 

(C in − C ∗) , (41) 

here the flow rate F is 3.9 L/h, the volume of the reservoir V is

.75 mL, and C in is the concentration of input gas determined by 

he ratio of pure oxygen and air. Solving (41) while the ratio is 

xed between the control actions gives the concentration of oxy- 

en source as 

 

∗(t) = C + (C ∗(0) − C ) e −F t/V . (42) 
in in 

4 
An oxygen uptake rate with constant specific oxygen uptake 

ate ( q O = 20 mmol/g/h) ( Andersen and von Meyenburg, 1980 ) and

onstant specific growth rate ( μ = 0 . 5 h 

-1 ) ( Li et al., 1992 ) is rep-

esented as 

UR (t) = q O X (t) = q O X (0) e μt , (43) 

here X(t) is the cell density as function of time, which has expo- 

ential growth. With these conditions, (40) can be written as 

n ( t ) = �n ( 0 ) e 
−λ2 

n t + B n 

(
C in 

λ2 
n 

(
1 − e −λ2 

n t 
)

+ 

C ∗( 0 ) − C in 

λ2 
n − F /V 

(
e −Ft /V − e −λ2 

n t 
))

− R n q O X ( 0 ) 

λ2 
n + μ

(
e μt − e −λ2 

n t 
)
. (44) 

This expression suggests a superposition of the form, 

(x, t) = C in p(x ) + (C ∗(0) − C in ) e 
−F t/V q (x ) + 
(x, t) . (45)

ith this form of the solution, 
(x, t) now satisfies homogeneous 

oundary conditions, allowing the concentration to be differen- 

iable and the flux to be determined for the k L a calculation. The 

ewly introduced functions can be evaluated by 

d 

2 
p 

d x 2 
= 0 , p(0) = 1 , 

d p 

d x 
(1) = 0 , (46) 

d 

2 
q 

d x 2 
+ 

F 

V 

1 

˜ D 

q = 0 , q (0) = 1 , 
d q 

d q 
(1) = 0 , (47)

 (γ −) = q (γ + ) , K p ̃  D p 
d q 

d x 
(γ −) = K w ̃

 D w 

d q 

d x 
(γ + ) . (48) 

olving these equations results in 

p(x ) = 1 , (49) 

 ( x ) = 

⎧ ⎨ ⎩ 

A p,q sin 

(
x 
√ 

F 
V 

1 
˜ D p 

)
+ B p,q cos 

(
x 
√ 

F 
V 

1 
˜ D p 

)
, 0 < x < γ , 

A w,q sin 

(
x 
√ 

F 
V 

1 
˜ D w 

)
+ B w,q cos 

(
x 
√ 

F 
V 

1 
˜ D w 

)
, γ < x < 1 , 

(50) 

here 

A p,q 

B p,q 

]
= M F V 

[
A w,q 

B w,q 

]
= 

[
M F V, 11 M F V, 12 

M F V, 21 M F V, 22 

][
A w,q 

B w,q 

]
, (51) 

 p,q = 

M F V, 11 tan 

√ 

F 
V 

1 
˜ D w 

+ M F V, 12 

M F V, 21 tan 

√ 

F 
V 

1 
˜ D w 

+ M F V, 22 

, B p,q = 1 , (52) 

 w,q = 

tan 

√ 

F 
V 

1 
˜ D w 

M F V, 21 tan 

√ 

F 
V 

1 
˜ D w 

+ M F V, 22 

, B w,q = 

1 

M F V, 21 tan 

√ 

F 
V 

1 
˜ D w 

+ M F V, 22 

. 

(53) 

he FFT method can be used to solve for 
(x, t) using the same 

igenfunctions given by (38) , 

(x, t) = 

∞ ∑ 

n =1 


n (t)�n (x ) , (54) 

n (t) = 
n (0) e −λ2 
n t − R n q O X (0) 

λ2 
n + μ

(
e μt − e −λ2 

n t 
)
. (55) 

Compared to (44) , the B n term is zero due to the homoge- 

eous boundary condition. The last undetermined term 
n (0) can 

e determined from the initial condition. A constant concentration 
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(a)

(b)

(c)

Fig. 2. Transient responses of the dissolved oxygen concentration at the oxygen 

sensor for the k L a and FFT models in response to (a) step changes made every 60 s 

and (b) step changes made every 10 s. (c) Transient responses of the mass transfer 

coefficient k L a calculated from (14) with the FFT model (red line) and quasi-steady 

state value (16) used in the k L a model (blue line) for step changes made every 60 

s. (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.) 
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Fig. 3. Concentration profile throughout the microbioreactor from the FFT model. 

The black lines indicate concentration at the boundaries and the interface. 
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rofile in equilibrium with the oxygen source as the initial condi- 

ion results in 

(x, 0) = ( C ∗(0) − C in ) ( 1 − q (x ) ) , (56) 

n (0) = 

〈

(x, 0) , �n 

〉
= B n (C 

∗(0) − C in ) 

(
1 

λ2 
n 

− 1 

λ2 
n − F /V 

)
. (57) 

he final concentration profile at the previous control action as the 

nitial condition results in 

( x, 0 ) = C in , p + 

(
C 

∗
p ( 0 ) − C in , p 

)
e −Ft / V q ( x ) + 

∞ ∑ 

n =1 


n,p ( T ) �n ( x ) 

−C − ( C ∗( 0 ) − C ) q ( x ) , (58) 
in in 

5 
n ( 0 ) = 〈 
( x, 0 ) , �n 〉 = 
n,p ( T ) + 

B n 

λ2 
n 

(
C in ,p − C in 

)
+ 

B n 

λ2 
n − F /V 

((
C ∗p ( 0 ) − C in ,p 

)
e −Ft /V + C ∗( 0 ) − C in 

)
(59) 

here the subscript p represents the values from the last control 

ction and T is the time period of the control action. The concen- 

ration profile is then given by (38), (45), (49), (50), (54), (55), (57) ,

nd (59) . 

The k L a and FFT models are evaluated by simulating step 

hanges in the input gas concentration. The system is initially at 

uasi-steady state with 250% Air Sat input gas, then the input gas 

oncentration is alternated between 200 and 250% Air Sat. 

Fig. 2 a shows the concentrations at the oxygen sensor for each 

odel when the concentration of input gas is alternated every 60 

. The k L a and FFT models overlap as quasi-steady state is ap- 

roached, with difference less than 1% Air Sat after ∼15 s (0.2% Air 

at after ∼20 s). That is, the models agree when the time after the 

tep change is a factor of about two larger than the characteristic 

ime for the DO transport, on the order of 1 /k L a ≈ 10 s. 

The transient behaviors after the step changes, however, are dif- 

erent for the two models. Fig. 2 b shows the difference when the 

nput gas concentration is alternated every 10 s. The DO concen- 

ration at the oxygen sensor responds more quickly to the step 

hanges for the k L a model. Because the k L a model is a lumped

arameter model with constant quasi-steady state k L a value, the 

hange in the concentration of the oxygen source caused by the 

tep change is sensed instantaneously, leading to immediate re- 

ponse of the oxygen transfer rate and the DO concentration at the 

xygen sensor in sequence. The k L a value calculated from (14) with 

he FFT model shows that the actual k L a value is not constant but 

aries rapidly after the step change to counteract the change in 

he concentration gradient due to concentration of oxygen source 

 Fig. 2 c). 

In addition to the inaccurate transient behaviors after the step 

hange, the k L a model is not able to capture the actual concentra- 

ion profile in the microbioreactor, especially in the growth well. 

he concentration profile varies over time due to the step change 

n the input gas concentration and the exponentially increasing 

xygen uptake rate ( Fig. 3 ). The significant difference in the con- 

entration throughout the growth well is evident for the high oxy- 

en uptake rate occurring at experimental conditions. The DO con- 

entration at the oxygen sensor, which is the only concentration 

vailable in the actual experimental setup, can only serve as the 

inimum concentration in the growth well. 
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Fig. 4. Specific growth rate measurements from Li et al. (1992) (circles) and 

Brunker and Brown (1971) (squares) and the exponentially decreasing specific 

growth rate model constructed from the measurements (line). 
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Table 1 

Values assumed for the parameter covariances. 

θi D p ηD w K p K w 

a T,i σT / ̂ θi 0.02 0.02 −0.02 −0.02 

a G,i σG / ̂ θi 0 −0.03 0 −0.03 

σθi 
/ ̂  θi 0.05 0.05 0.05 0.05 
. Feedback control results 

The DO concentration profile provided from the FFT model is 

mportant in terms of DO control in the microbioreactor. Oxygen 

oxicity is well-known to occur when the DO concentration is ex- 

essive ( Fridovich, 1998 ). As such, the classical PID control strat- 

gy of controlling the DO concentration at the oxygen sensor is not 

deal. A better strategy is to control the DO concentration through- 

ut the growth well using NMPC. NMPC can explicitly take into the 

ffect of DO concentration on the cell metabolism such as growth 

nd production that directly impacts the time and cost for the 

anufacturing. 

The cell type in the microbioreactor used for the experiments 

as Escherichia coli , which is one of the most widely used bacteria 

pecies in the bioprocess industry. Because E. coli has been widely 

tudied, numerous studies are available that report the effect of the 

O concentration on the specific growth rate of the E. coli . Within 

he oxygen concentration of air saturation, Li et al. (1992) found 

hat the specific growth rate increased with the DO concentration 

n accordance with the Monod model. Over the oxygen concentra- 

ion of air saturation, Brunker and Brown (1971) found that the 

ultivation with pure oxygen at 1 bar decreased the specific growth 

ate by 25% compared to the air, whereas pure oxygen above 1.5 

ar was completely bacteriostatic, inhibiting the cell growth. Here 

he experimental observations of these regions are described by 

he specific growth rate decreasing exponentially as the DO con- 

entration increases ( Fig. 4 ). 

With this information on the dependence of specific growth 

ate on the DO concentration, the optimal control problem for each 

MPC calculation can be formulated as minimizing the decrease in 

he maximum specific growth rate throughout the growth well, 

min 

 in ( t k ) , ... ,C in ( t k + N p −1 ) 

k + N p ∑ 

i = k +1 

N z ∑ 

j=1 

( 

1 −
μmax 

(
�(z j , t i ) 

)
μmax (�max ) 

) 2 

, (60) 

μmax ( �) 

μmax ( �max ) 
= 

{ 

�
K+�

K+�max 

�max 
, � < �max , 

1 − a 
(
e b(�−�max ) − 1 

)
, � > �max , 

(61) 

here μmax is the maximum specific growth rate; �max is the oxy- 

en concentration of air saturation; z j is the length from the inter- 

ace, which the length is divided with discrete steps z 1 = 0 < z 2 
 . . . < z j < . . . < z N z = L ; t i is the sampling time; and N p is the

rediction horizon. The concentration profile is predicted using the 

FT model. In the actual microbioreactor, the specific oxygen up- 

ake rate and the specific growth rate are not constants. For accu- 

ate state estimation, a parameter-adaptive EKF was incorporated 

nto the NMPC formulation, including the specific growth rate and 

pecific oxygen uptake rate as the estimated parameters. The pro- 
6 
ess model is 

 (t k ) = [ C ∗(t k ) C ∗(t k −1 ) X (t k ) 
n (t k ) �L (t k ) μ(t k ) q O (t k )] 	 , 

(62) 

 (t 0 ) = [ C ∗(t 0 ) C ∗(t 0 ) X (t 0 ) 0 C ∗(t 0 ) μ(t 0 ) q O (t 0 )] 	 , (63)

 (t k ) = [ C in (t k ) C in (t k −1 )] 	 , (64) 

 (t 0 ) = [ C in (t 0 ) C ∗(t 0 )] 	 , (65) 

= [ D p η D w 

K p K w 

] 	 , (66) 

 ( t k +1 ) = f ( x ( t k ) , u ( t k ) ; θ ) 

= 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

C in ( t k ) + ( C ∗( t k ) − C in ( t k ) ) e 
−FT /V 

C ∗( t k ) 
X ( t k ) e 

μ( t k ) T { { 

n ( t k ) + 

B n 
λ2 

n 
( C in ( t k −1 ) − C in ( t k ) ) + 

B n 
λ2 

n −F/V (
( C ∗( t k −1 ) − C in ( t k −1 ) ) e 

−FT /V − ( C ∗( t k ) − C in ( t k ) ) 
)} 

e −λ2 
n T 

− R n q O ( t k ) X ( t k ) 
λ2 

n + μ( t k ) 

(
e μ( t k ) T − e −λ2 

n T 
)} 

C in ( t k ) + ( C ∗( t k ) − C in ( t k ) ) q ( L ) e 
−FT /V + 

∑ 

n 
n ( t k +1 ) �n ( L ) 
μ( t k ) 
q O ( t k ) 

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(67)

 ( t k ) = g ( x ( t k ) ; θ ) = [ X ( t k ) �L ( t k ) ] 
	 
, (68) 

here �L is the concentration at the oxygen sensor and θ is the 

ector of model parameters with hyperellipsoidal parameter uncer- 

ainty described by the covariance matrix. 

The parameter covariances are based on experimental values 

 Douglas, 1964; St-Denis and Fell, 1971; Merkel et al., 20 0 0; Lu 

t al., 2001 ) and their dependence on the temperature and growth 

edia compositions can be described by 

i = 

ˆ θi + a T,i w T + a G,i w G + w M,i , (69) 

ar (θi ) = a 2 T,i σ
2 
T + a 2 G,i σ

2 
G + σ 2 

M,i = σ 2 
θi 
, (70) 

ov (θi , θ j ) = a T,i a T, j σ
2 
T + a G,i a G, j σ

2 
G , (71) 

here w T , w G , and w M 

are zero-mean Gaussian white-noise vari- 

bles of temperature, growth media compositions, and measure- 

ent error; and a T and a G are coefficients showing the depen- 

ence of the parameters on the temperature and growth media 

ompositions ( Table 1 ). The control input is the input gas concen- 

ration and the measured variables are the cell density and the DO 

oncentration at the oxygen sensor. 

The NMPC is compared to the original PID control in simula- 

ions, assuming random measurement noise with standard devia- 

ion of 1 g-dry cell weight (DCW)/L for the cell density and 3% 
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(a)

(b)

(c)

Fig. 5. (a) DO concentrations at the sensor and the interface, (b) input gas con- 

centrations, and (c) quadratic mean of decrease in the maximum specific growth 

rate for NMPC and PID control. (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 
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Fig. 6. On-line estimates of the (a) specific growth rate, (b) specific oxygen up- 

take rate, and (c) oxygen uptake rate obtained by the parameter-adaptive EKF (solid 

lines) with σμ = 0 . 005 μ and σq O = 0 . 005 q O compared to the actual values (dotted 

lines). The estimation errors of the specific growth rate and the specific oxygen up- 

take rate decrease as the number of cells in the microbioreactor increase and overall 

take up oxygen at a higher rate. 
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ir Sat for the DO concentration at each sampling instance. The 

etpoint for the PID control was set to 50% Air Sat and the sam- 

ling period was set to 10 s. The numerical algorithms were im- 

lemented in Matlab and are available for download ( Hong and 

raatz, 2021 ). The NMPC Matlab code can be experimentally im- 

lemented on the physical system by using the Matlab Instrument 

ontrol Toolbox to swap the simulation model with the experi- 

ental system in the Matlab code. 

Fig. 5 a and b show the temporal response in the DO concen- 

rations at the sensor and the interface with the input gas con- 

entration set by NMPC and PID control. The NMPC shows an in- 

eresting manipulation of input gas concentration compared to PID 

ontrol. Initially, while the oxygen uptake rate is still low, NMPC 

hose higher input gas concentration than PID control, to mini- 

ize its objective by maintaining the oxygen concentration profile 
7 
round the air saturation. As the oxygen uptake rate increases, the 

O concentration profile through the growth well widens ( Fig. 5 a) 

nd higher DO concentrations affect the specific growth rate more 

egatively compared to the lower concentration. As such, the in- 

ut gas concentration chosen by NMPC becomes lower than that 

f PID control, allowing the DO concentration at the sensor to be 

ower than the setpoint of the PID controller. 

The NMPC formulation incorporates parameter estimation for 

he specific growth rate and the specific oxygen uptake rate, which 

etermine the cell density and the oxygen uptake rate. The param- 

ter estimation removes the needs for an accurate model of the 

ell metabolism, which allows the NMPC to be widely applied to 
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Fig. 7. Time variation of the probability distribution functions of the quadratic 

mean of decrease in the specific growth rate for (a) NMPC and (b) PID control. The 

probability distribution functions were determined from Monte Carlo simulations. 

d

s

t  

g

c

a

u

F

p

r

i

o

t

r

a

q

H

f

c

p

t

w

t

i

C

b

c

m

w

m

i

o

N

i

6

m

a

s

h

A

r

o

t

g

D

t

t

D

c

i

C

s

i

W

A

f

S

1

d

n

P

P

S

f

1

R

A

A  

B

ifferent cells and operation modes. Fig. 6 plot the estimates of the 

pecific growth rate, specific oxygen uptake rate, and oxygen up- 

ake rate to a linear and step change in the actual value of specific

rowth rate and specific oxygen uptake rate. The estimated spe- 

ific growth rate and specific oxygen uptake rate converge to the 

ctual value with some fluctuations, while the estimated oxygen 

ptake rate tightly tracks the true value over whole time period. 

or the low cell density and oxygen uptake rate during the initial 

eriod, changes in cell density and DO concentration are compa- 

able to the measurement noise. The parameter estimation can be 

mproved to track the actual value faster by increasing the variance 

f the specific growth rate and the specific oxygen uptake rate fed 

o the parameter-adaptive EKF, but that tuning would make the pa- 

ameter estimation more sensitive to the measurement noise and 

mplify the fluctuations. 

Fig. 5 c shows the temporal response for the value of the 

uadratic mean of decrease in the maximum specific growth rate, 

(t) = 

√ √ √ √ 

1 

N z 

N z ∑ 

j=1 

[ 

1 −
μmax 

(
�(z j , t) 

)
μmax (�max ) 

] 2 

, (72) 

or both NMPC and PID control. NMPC results in about a 35% de- 

rease in the value of H at the end of the simulation time com- 

ared to PID control. The NMPC formulation provided optimal con- 

rol of the microbioreactor for the given objective. The objective 

as growth rate for this study but this can be further extended 

o other important characteristics such as productivity and viabil- 
8 
ty. NMPC would have greater value for eukaryotes, such as the 

HO cells widely used to make monoclonal antibodies and other 

iopharmaceuticals, because they are more sensitive to the oxygen 

oncentration than the E. coli used in this study. 

To investigate the effect of the parameter uncertainty in the 

odel, the value of H was computed using Monte Carlo simulation 

ith 10,0 0 0 random parameter sets obtained from the covariance 

atrix, and used to construct the probability distribution functions 

n Fig. 7 . The variance of H obtained by NMPC is smaller than that 

f PID control, by about 70% at the end of the simulation time. The 

MPC formulation is more robust to the parameter uncertainties, 

ncluding those not explicitly considered in the state estimation. 

. Conclusion 

This article derives the analytical solution of a mechanistic 

odel for the transient oxygen concentration profile throughout 

 microbioreactor using the FFT method. The simulation results 

how the limitation of the k L a model in capturing transient be- 

avior and the concentration profile throughout the growth well. 

 parameter-adaptive EFK-based NMPC algorithm was proposed to 

eplace PID control for the DO concentration to minimize the effect 

f the oxygen concentration profile throughout the growth well on 

he maximum specific cell growth rate. The estimation of specific 

rowth rate and specific oxygen uptake rate with cell density and 

O concentration measurement enables the NMPC to be applicable 

o various microbioreactor systems with different cells and opera- 

ion modes. 

eclaration of Competing Interest 

The authors declare that they have no known competing finan- 

ial interests or personal relationships that could have appeared to 

nfluence the work reported in this paper. 

RediT authorship contribution statement 

Moo Sun Hong: Conceptualization, Methodology, Formal analy- 

is, Investigation, Writing - original draft, Writing - review & edit- 

ng. Richard D. Braatz: Conceptualization, Writing - original draft, 

riting - review & editing, Funding acquisition. 

cknowledgment 

This material is based upon work supported in part by the De- 

ense Advanced Research Projects Agency (DARPA) and SPAWAR 

ystems Center Pacific (SSC Pacific) under Contract No. N66001- 

3-C-4025. Any opinions, findings and conclusions or recommen- 

ations expressed in this material are those of the author(s) and do 

ot necessarily reflect the views of the Defense Advanced Research 

rojects Agency (DARPA) and SPAWAR Systems Center Pacific (SSC 

acific). 

upplementary material 

Supplementary material associated with this article can be 

ound, in the online version, at doi: 10.1016/j.compchemeng.2021. 

07255 . 

eferences 

llgöwer, F., Zheng, A. (Eds.), 20 0 0. Nonlinear Model Predictive Control. Birkhäuser, 

Basel, Switzerland . 

ndersen, K.B. , von Meyenburg, K. , 1980. Are growth rates of Escherichia coli in
batch cultures limited by respiration? J. Bacteriol. 144 (1), 114–123 . 

aez, A., Shiloach, J., 2014. Effect of elevated oxygen concentration on bacteria, 
yeasts, and cells propagated for production of biological compounds. Microb. 

Cell Fact. 13 (1), 181. doi: 10.1186/s12934- 014- 0181- 5 . 

https://doi.org/10.1016/j.compchemeng.2021.107255
http://refhub.elsevier.com/S0098-1354(21)00033-8/sbref0001
http://refhub.elsevier.com/S0098-1354(21)00033-8/sbref0002
http://refhub.elsevier.com/S0098-1354(21)00033-8/sbref0002
http://refhub.elsevier.com/S0098-1354(21)00033-8/sbref0002
https://doi.org/10.1186/s12934-014-0181-5


M.S. Hong and R.D. Braatz Computers and Chemical Engineering 147 (2021) 107255 

B

B  

C

D

E  

F

H

H

H

H  

H

K  

K

L

L  

L

M

M  

N

R

R

R

S

S

S

S  

S  

V

Y

Z

Z

anga, J.R., Balsa-Canto, E., Moles, C.G., Alonso, A .A ., 2005. Dynamic optimization 
of bioprocesses: efficient and robust numerical strategies. J. Biotechnol. 117 (4), 

407–419. doi: 10.1016/j.jbiotec.2005.02.013 . 
runker, R.L. , Brown, O.R. , 1971. Effects of hyperoxia on oxidized and reduced NAD

and NADP concentrations in Escherichia coli. Microbios. 4 (15), 193–203 . 
hang, L., Liu, X., Henson, M.A., 2016. Nonlinear model predictive control of fed- 

batch fermentations using dynamic flux balance models. J. Process Contr. 42, 
137–149. doi: 10.1016/j.jprocont.2016.04.012 . 

ouglas, E., 1964. Solubilities of oxygen, argon, and nitrogen in distilled water. J. 

Phys. Chem. 68 (1), 169–174. doi: 10.1021/j100783a028 . 
l Bahja, H., Vega, P., Bakka, O., Mesquine, F., 2009. Non linear GPC of a nutrient

removal biological plant. In: 2009 IEEE Conference on Emerging Technologies & 
Factory Automation, pp. 1–7. doi: 10.1109/ETFA.2009.5347099 . 

ridovich, I. , 1998. Oxygen toxicity: a radical explanation. J. Exp. Biol. 201 (8), 
1203–1209 . 

enson, M.A., Seborg, D.E. (Eds.), 1997. Nonlinear Process Control. Prentice Hall PTR, 

Upper Saddle River, NJ . 
ong, M.S., Braatz, R.D., 2021. Mechanistic Modeling and Parameter-Adaptive Non- 

linear Model Predictive Control of a Microbioreactor. Massachusetts Institute of 
Technology, Cambridge, MA. Software. Available for download at https://web. 

mit.edu/braatzgroup/MicrobioreactorHong.zip 
ong, M.S., Severson, K.A., Jiang, M., Lu, A.E., Love, J.C., Braatz, R.D., 2018. Challenges 

and opportunities in biopharmaceutical manufacturing control. Comput. Chem. 

Eng 110, 106–114. doi: 10.1016/j.compchemeng.2017.12.007 . 
ong, M.S. , Sun, W. , Lu, A.E. , Braatz, R.D. , 2020. Process analytical technology and

digital biomanufacturing of monoclonal antibodies. Am. Pharm. Rev. 23 (6), 
122–125 . 

ong, T., Zhang, J., Morris, A.J., Martin, E.B., Karim, M.N., 1996. Neural based pre- 
dictive control of a multivariable microalgae fermentation. In: 1996 IEEE Inter- 

national Conference on Systems, Man and Cybernetics. Information Intelligence 

and Systems, Vol. 1, pp. 345–350. doi: 10.1109/ICSMC.1996.569793 . 
im, J.W. , Lee, Y.H. , 1998. Development of microfermenter chip. J. Korean Phys. Soc.

33, S462–S466 . 
ostov, Y., Harms, P., Randers-Eichhorn, L., Rao, G., 2001. Low-cost microbioreactor 

for high-throughput bioprocessing. Biotechnol. Bioeng. 72 (3), 346–352. doi: 10. 
1002/1097-0290(20010205)72:3 < 346::AID-BIT12 > 3.0.CO;2-X . 

ee, H.L.T., Boccazzi, P., Ram, R.J., Sinskey, A.J., 2006. Microbioreactor arrays with in- 

tegrated mixers and fluid injectors for high-throughput experimentation with 
pH and dissolved oxygen control. Lab Chip 6 (9), 1229–1235. doi: 10.1039/ 

B608014F . 
i, X., Robbins, J.W., Taylor, K.B., 1992. Effect of the levels of dissolved oxygen on the

expression of recombinant proteins in four recombinant Escherichia coli strains. 
J. Ind. Microbiol. Biot. 9 (1), 1–9. doi: 10.1007/BF01576362 . 
9 
u, X., Manners, I., Winnik, M.A., 2001. Polymer/silica composite films as lu- 
minescent oxygen sensors. Macromolecules 34 (6), 1917–1927. doi: 10.1021/ 

ma001454j . 
aybeck, P.S. , 1982. Stochastic Models, Estimation, and Control. Academic Press, 

New York, NY . 
erkel, T.C., Bondar, V., Nagai, K., Freeman, B.D., 20 0 0. Sorption and transport of

hydrocarbon and perfluorocarbon gases in poly(1-trimethylsilyl-1-propyne). J. 
Polym. Sci. Pol. Phys. 38 (2), 273–296. doi: 10.1002/(SICI)1099-0488(20000115) 

38:2 < 273::AID-POLB1 > 3.0.CO;2-X . 

agy, Z.K. , Braatz, R.D. , 2010. Nonlinear model predictive control for batch pro- 
cesses. In: Levine, W.S. (Ed.), The Control Handbook: Control Systems Applica- 

tions, second ed. CRC Press, Boca Raton, Florida, pp. 15.1–15.30 . 
amkrishna, D., Amundson, N.R., 1974. Transport in composite materials: Reduc- 

tion to a self adjoint formalism. Chem. Eng. Sci. 29 (6), 1457–1464. doi: 10.1016/ 
0 0 09- 2509(74)80170- 3 . 

ani, K.Y., Rao, V.S.R., 1999. Control of fermenters–a review. Bioprocess Eng. 21 (1), 

77–88. doi: 10.10 07/PL0 0 0 09066 . 
osenbluth, M.N., Berk, H.L., Doxas, I., Horton, W., 1987. Effective diffusion in lami- 

nar convective flows. Phys. Fluids 30 (9), 2636–2647. doi: 10.1063/1.866107 . 
agues, F., Horsthemke, W., 1986. Diffusive transport in spatially periodic hydrody- 

namic flows. Phys. Rev. A 34 (5), 4136–4143. doi: 10.1103/PhysRevA.34.4136 . 
aha, P., Patwardhan, S., Ramachandra Rao, V., 1999. Maximizing productivity of a 

continuous fermenter using nonlinear adaptive optimizing control. Bioprocess 

Eng. 20 (1), 15–21. doi: 10.10 07/s0 04490 050553 . 
imon, L., Karim, M.N., 2002. Control of starvation-induced apoptosis in Chinese 

hamster ovary cell cultures. Biotechnol. Bioeng. 78 (6), 645–657. doi: 10.1002/ 
bit.10250 . 

t-Denis, C.E., Fell, C.J.D., 1971. Diffusivity of oxygen in water. Can. J. Chem. Eng. 49
(6). doi: 10.1002/cjce.5450490632 . 885–885 

zita, N., Boccazzi, P., Zhang, Z., Boyle, P., Sinskey, A.J., Jensen, K.F., 2005. Develop-

ment of a multiplexed microbioreactor system for high-throughput bioprocess- 
ing. Lab Chip 5 (8), 819–826. doi: 10.1039/B504243G . 

alappil, J., Georgakis, C., 20 0 0. Systematic estimation of state noise statistics for 
extended Kalman filters. AIChE J. 46 (2), 292–308. doi: 10.1002/aic.690460209 . 

oo, S.J., Jeong, D.H., Kim, J.H., Lee, J.M., 2016. Optimization of microalgal photo- 
bioreactor system using model predictive control with experimental validation. 

Bioproc. Biosyst. Eng. 39 (8), 1235–1246. doi: 10.10 07/s0 0449- 016- 1602- 0 . 

anzotto, A., Szita, N., Boccazzi, P., Lessard, P., Sinskey, A.J., Jensen, K.F., 2004. 
Membrane-aerated microbioreactor for high-throughput bioprocessing. Biotech- 

nol. Bioeng. 87 (2), 243–254. doi: 10.1002/bit.20140 . 
hang, Z., Boccazzi, P., Choi, H.-G., Perozziello, G., Sinskey, A.J., Jensen, K.F., 

2006. Microchemostat–microbial continuous culture in a polymer-based, instru- 
mented microbioreactor. Lab Chip 6 (7), 906–913. doi: 10.1039/B518396K . 

https://doi.org/10.1016/j.jbiotec.2005.02.013
http://refhub.elsevier.com/S0098-1354(21)00033-8/sbref0005
http://refhub.elsevier.com/S0098-1354(21)00033-8/sbref0005
http://refhub.elsevier.com/S0098-1354(21)00033-8/sbref0005
https://doi.org/10.1016/j.jprocont.2016.04.012
https://doi.org/10.1021/j100783a028
https://doi.org/10.1109/ETFA.2009.5347099
http://refhub.elsevier.com/S0098-1354(21)00033-8/sbref0009
http://refhub.elsevier.com/S0098-1354(21)00033-8/sbref0009
http://refhub.elsevier.com/S0098-1354(21)00033-8/sbref0010
https://web.mit.edu/braatzgroup/MicrobioreactorHong.zip
https://doi.org/10.1016/j.compchemeng.2017.12.007
http://refhub.elsevier.com/S0098-1354(21)00033-8/sbref0013
http://refhub.elsevier.com/S0098-1354(21)00033-8/sbref0013
http://refhub.elsevier.com/S0098-1354(21)00033-8/sbref0013
http://refhub.elsevier.com/S0098-1354(21)00033-8/sbref0013
http://refhub.elsevier.com/S0098-1354(21)00033-8/sbref0013
https://doi.org/10.1109/ICSMC.1996.569793
http://refhub.elsevier.com/S0098-1354(21)00033-8/sbref0015
http://refhub.elsevier.com/S0098-1354(21)00033-8/sbref0015
http://refhub.elsevier.com/S0098-1354(21)00033-8/sbref0015
https://doi.org/10.1002/1097-0290(20010205)72:3<346::AID-BIT12>3.0.CO;2-X
https://doi.org/10.1039/B608014F
https://doi.org/10.1007/BF01576362
https://doi.org/10.1021/ma001454j
http://refhub.elsevier.com/S0098-1354(21)00033-8/sbref0020
http://refhub.elsevier.com/S0098-1354(21)00033-8/sbref0020
https://doi.org/10.1002/(SICI)1099-0488(20000115)38:2<273::AID-POLB1>3.0.CO;2-X
http://refhub.elsevier.com/S0098-1354(21)00033-8/sbref0022
http://refhub.elsevier.com/S0098-1354(21)00033-8/sbref0022
http://refhub.elsevier.com/S0098-1354(21)00033-8/sbref0022
https://doi.org/10.1016/0009-2509(74)80170-3
https://doi.org/10.1007/PL00009066
https://doi.org/10.1063/1.866107
https://doi.org/10.1103/PhysRevA.34.4136
https://doi.org/10.1007/s004490050553
https://doi.org/10.1002/bit.10250
https://doi.org/10.1002/cjce.5450490632
https://doi.org/10.1039/B504243G
https://doi.org/10.1002/aic.690460209
https://doi.org/10.1007/s00449-016-1602-0
https://doi.org/10.1002/bit.20140
https://doi.org/10.1039/B518396K

	Mechanistic modeling and parameter-adaptive nonlinear model predictive control of a microbioreactor
	1 Introduction
	2 Theory and methods
	2.1 Mechanistic model
	2.2 Finite Fourier transform analysis
	2.3 Mass transfer coefficient derivation
	2.4 NMPC formulation

	3 Analytical solution of the microbioreactor model
	4 Dissolved oxygen concentration profiles
	5 Feedback control results
	6 Conclusion
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgment
	Supplementary material
	References


