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Dynamic artificial neural networks (DANNs) have become popular for the data-driven modelling of non-
linear dynamical systems. This article elucidates properties of a compact DANN model structure called the
standard normal operator form (SNOF). Sets of nonlinear dynamical systems are characterized for which
the SNOF can achieve the same model identification error with fewer neurons than needed by the pop-
ular DANN model structures. The results are demonstrated in a case study for a multi-stage bioreactor,
which is a highly nonlinear dynamical system in which the cells have a sharp change in dynamics during
a change in the feed composition as the bioreactor shifts from growth mode to production mode. The
ability of the SNOF to model highly nonlinear dynamical systems with a very small number of neurons
suggests its potential for serving as a basis for the design of model-based optimal control systems with
theoretical guarantees of closed-loop stability and performance.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

The ability of any static nonlinear function to be approximated
within any degree of accuracy by an artificial neural network
(ANN) initiated their wide application for black-box identification
of nonlinear dynamical systems. In particular, dynamical ANNs
(DANNSs) are the models that have been used in nonlinear control
technologies by Rockwell/Pavilion and AspenTech for more than
twenty years (Qin and Badgwell, 2003). While DANN-based con-
trol algorithms have been developed and applied for decades, the
control design and the closed-loop dynamics achieved in indus-
trial applications are not grounded in control theory. More specifi-
cally, the industrial control design methods provide no stability or
performance guarantees, and the DANN-based control designs can
destabilize the closed-loop system. This situation is addressed in
industrial applications by carrying out extensive closed-loop simu-
lations over wide variations in operating conditions, and re-tuning
the control weights until closed-loop stability is achieved while
minimizing oscillations and overshoot. Because any finite number
of closed-loop simulations cannot cover all of the potential operat-
ing conditions of the system, DANN-based control systems need to
be conservatively tuned (that is, to have sluggish performance) to
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provide strong confidence of their reliability when applied to the
real system. This situation is an especial concern for applications
in the manufacturing of small-molecule pharmaceuticals and bio-
therapeutics, in which a deviation from the desired product quality
attributes can result in adverse side affects (FDA, 1999).

Many researchers in the academic control communities in the
last several decades have worked to provide a theoretical founda-
tion for the stability analysis of DANNs (e.g. see the reviews by
Suykens et al., 1996 and Kim et al., 2018 and citations therein).
In particular, many sufficient conditions have been derived for the
global asymptotic stability of a DANN. In short, the analysis tools
tend to be least conservative when the number of neurons is small.
More precisely, the number of terms that introduce conservatism
in such Lyapunov analysis based on any of the model structures
is proportional to the number of neurons. Since a closed-loop sys-
tem in which the process and controller are each written as DANNs
can be written as one large DANN by applying block diagram alge-
bra (e.g., Desoer and Vidyasagar, 1975), these stability conditions
are theoretically applicable to both open- and closed-loop systems.
The theoretical results that produce the tightest (aka least conser-
vative) conditions apply the Lyapunov method (La Salle and Lef-
schetz, 1961) to a Lur'e-Postnikov function (Forti and Tesi, 1995)
to derive a set of inequalities which, if feasible, implies that the
DANN is globally asymptotically stable. These Lyapunov functions
consist of a quadratic function plus the sum over the number of
neurons of some function of the neuron. Each term in the sum
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is subsequently bounded while introducing some conservatism.
The introduction of each additional neuron to a DANN results in
introducing another conservative step in the Lyapunov analysis,
so that the overall stability condition tends to be too conserva-
tive to be practically useful for DANNs with a large number of
neurons.

For the theoretical results to be sufficiently nonconservative to
be practically useful in applications, an important consideration is
the number of neurons needed by a DANN model structure to be
able to describe the input-output dynamics of the system. The ar-
ticle provides insights into the number of required neurons for all
three popular classes of nonlinear dynamic ANN (DANN) model
structures: the Neural State-Space Model (NSSM), Global Input-
Output Model (GIOM), and Dynamic Recurrent Neural Network
(DRNN). The NSSM is a nonlinear dynamical state-space model
in which nonlinearities are parameterized by a feedforward ANN
(FANN) (Suykens et al., 1995). The GIOM has a recursive input-
output structure, in which prediction is made from a finite mea-
surement of past inputs and outputs, and the nonlinearities of the
system are parameterized by FANNs (Billings et al., 1992; Levin
and Narendra, 1995; Narendra and Parthasarathy, 1990). The struc-
ture of the DRNN is nearly the same as the NSSM, but with a lin-
ear recursive term added to the state equation for the DRNN (Jin
and Gupta, 1996; Fang and Kincaid, 1996). The property that ANNs
can approximate any nonlinear function with arbitrarily small er-
ror (Cybenko, 1989) can be used to show that all three classes of
DANNSs can approximate nonlinear dynamical systems within any
arbitrarily small error (Kim et al., 2018), making them suitable as a
basis for the black-box modeling and control of nonlinear dynami-
cal systems.

After the above background analysis, the article considers the
standard nonlinear operator form (SNOF), which is a nonlin-
ear model structure that can be shown to approximate nonlin-
ear dynamical systems with arbitrarily small approximation error
(Kim et al., 2018). The analysis motivates the use of the SNOF, in-
stead of the three DANNSs, as a theoretically rigorous and practi-
cally useful basis for the analysis and control of nonlinear dynam-
ical systems.

Although not the main focus of this article, it is worth men-
tioning that all three of the aforementioned DANNs can be trans-
formed into an equivalent SNOF, so global asymptotic stability of
the three DANNSs can be assessed by analyzing the stability of their
SNOFs. In particular, any less conservative stability conditions de-
rived for a SNOF can be immediately applied to the three DANNs
(Kim et al., 2018). For any of these model structures, the conser-
vatism of applying Lyapunov analysis is based on the number of
neurons in a model, which motivates the focus here of comparing
the model structures in terms of the number of neurons needed to
model a nonlinear dynamical system. The preferred model struc-
ture is that which is most “compact,” which in this context refers
to having the smallest number of neurons needed to fit data with
small model error.

A relevant prior result is that an example has been published
in which a best-fit SNOF had a smaller model error than best-
fit DANNs when all were restricted to have the same number of
neurons (Kim et al., 2011). This article provides a deeper structural
comparison between the different model structures. We show that
the 3 DANNs have highly restrictive model structures compared to
the SNOF. Then we derive the number of degrees of freedom in the
different model structures for a class of simple nonlinear dynami-
cal systems, which provides enough insight to derive the results for
arbitrary numbers of states and neurons. Then DANNs and SNOF
are compared in terms of their ability to model the input to state
relationships for a multistage bioreactor with highly nonlinear dy-
namics, which show that the SNOF is able to model the nonlinear
dynamic relationships with only one or two neurons.

Computers and Chemical Engineering 159 (2022) 107674

This paper is organized as follows. Section 2 provides mathe-
matical background and defines nomenclature for ANNs, DANNSs,
and SNOF. Section 3 analyzes the different DANN model structures
in terms of their matrix structure and eigenvalues, after being re-
formulated as SNOFs. Section 4 derives the number of degrees of
freedom for the DANNs and SNOF, illustrating the calculations in
simple examples. Section 5 provides the bioreactor case study, and
Section 6 concludes the paper.

2. Theoretical background

This section provides some background on ANNs, DANNs, SNOF,
and some results in controllability and observability used later in
the article.

2.1. Architecture of artificial neural networks

An artificial neural network (ANN) can approximate any nonlin-
ear relationship with bounded input and bounded output with ar-
bitrarily small approximation error (Cybenko, 1989). The basic pro-
cessing unit of an ANN is called a neuron, the collection of the
neurons is called a layer, and the interconnection of the layers con-
stitutes an ANN. The architecture of ANN refers to how the layers
are interconnected with each other. A neuron can be represented
as y =y (X, w;s; + B) where y is a nonlinear function referred
to as an activation function, w = [wy, Wy, -, wn]' is a weight
vector which represents connection between the neuron and pre-
vious layer, s; are the inputs dispatched from the previous layer to
the neuron, and B is a bias term. For the activation function y,
a monotonic function bounded in the interval is usually selected
such as hyperbolic tangent function € [—1, 1] or sigmoid function
€[0,1]. The most popular ANN architecture is the Feedforward
ANN (FANN) in which input, hidden, and output layers are con-
nected in series. The activation function of the output layer is usu-
ally chosen as a linear function (Levin and Narendra, 1995), and the
FANN can be represented as y = ZL] WiV(ZT:] vijuj + Bi), where
v;; represents the weight between the jth neuron in the input layer
and the ith neuron in the hidden layer, w; represents the weight
between the jth neuron in the hidden layer and the neuron in the
output layer.

2.2. Dynamic artificial neural network model structures

A discrete-time state-space system can be represented as
Xipr = fw) + v x(0) =x0
Vi = 8y, Ug) +wy

where y e R/, ueR™, xecR", veR", and weR! represent the
output, input, state, process noise, and measurement noise; f :
R" x R™ — R" and g: R" x R™ — R! are assumed to be piecewise
continuously differentiable nonlinear mappings. The parameterized
model for (1) can be represented as

2(0) = %o

(1)

Ry = f Qi wg 0p) + Dy;
Ve = B8Ry, uy; Og) + Wy,

where y € R! and % € R" represent the output predictor vector,
state predictor vector, 6y and 6 are vectors of model parameters
to be estimated, X is the initial condition of the model's state,
and 7 € R" and W € R are modeled as Gaussian random processes
with prior known means and standard deviations. The identifica-
tion of the process model is the determination of 6; and 8g such
that real process (1) is closely approximated by (2) (Kim et al.,
2018). In practice, given the existence and uniqueness of solution
for the dynamical system, the norm-bounded trajectories of the
difference between (1) and (2) are used to represent the closeness

(2)
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of the approximation (Kim et al., 2018). Three popular parameter-
ized model structures used to approximate a nonlinear dynamical
system are NSSM, GIOM, and DRNN. In the parameterization of the
algebraic nonlinearity in each model structure, a FANN is used,
and dynamic backpropagation algorithms are used in determin-
ing (aka training) the unknown model parameters (Narendra and
Parthasarathy, 1990). The mathematical structures of the models
are given below.

2.2.1. Neural state-space model (NSSM)

This state-space model uses FANNs to represent nonlinear map-
pings in the state and output equations (Suykens et al., 1995). The
nonlinear mappings of equations are chosen to have one hidden
layer, respectively, and the dynamic of the nonlinear system can
be represented as

Rip1 = Wag tanh (VaRy, + Vi + Bap) + Uk

N . (3)
Yk = Wep tanh (V& + Vpuy + Bep) + wy

where J, € R, u € R™, and £, € R" are the output, input, and state;
hx and hy € Z* are the number of neurons in the state and out-
put equations, Vy € Rx", Vp € Rhoxm Wyp e R, Bop e R, Vi €
Rhyxn vy e Rlyxm - B e Rhy, and Wep € RI*My are the parameters
to be estimated in the FANNs. The generality and completeness of
NSSM has been proved (Kim et al., 2018).

2.2.2. Global input-output model (GIOM)
The nonlinear input-output model structure

Vi1 = E(Uy. . o Pire1) + Uk (4)

uses past observations of input and output to predict future out-
put (Levin and Narendra, 1995; Narendra and Parthasarathy, 1990),
where g and r are the input and output time horizons, respectively.
Replacing g with a neural network results in the GIOM

Jee1 = Watanh(Va¥} + VeUI! + Veuy + B) + vk (5)

s Uk—q415 Yo -

5 - A -1
where Yy & [y, ... Vi lT € R U S uy U gl €
Rm(q—l)xl’ W, e Rlxh' Vy e thlr' Vg e thm(q—l)' Ve e thm’ and
B € RM. The generality and completeness of GIOM has been proved
(Levin and Narendra, 1995).

2.2.3. Dynamic recurrent neural network (DRNN)
The DRNN

Rip1 = —0Ry + Wy tanh (Vary + Vauy + Bap) + Uk

N N (6)
Yk = WCD tanh(Vka + VDle + ﬂCD) + Wy

includes a recursive term in the state equation (Jin and Gupta,
1996; Fang and Kincaid, 1996), where « is the self-feedback pa-
rameter chosen to satisfy 0 <« <1 and controls the incremental
decay of state. The generality and completeness of DRNN has been
proved (Jin and Gupta, 1996).

2.3. Standard nonlinear operator form (SNOF)

In modern robust linear control theory, the Linear Fractional
Transformation (LFT) is a standard structure for representing linear
systems with some forms of uncertainty. Some past publications
(e.g., Suykens et al., 1995) have incorrectly stated that the NSSM
can be represented as an LFT. In actuality, the NSSM and other
DANNs can be written in the Standard Nonlinear Operator Form
(SNOF), which is a nonlinear model structure in which a linear
time-invariant dynamical system is connected to feedback with a
bounded static nonlinear operator that has been studied since the
early 1940s by Lur’e and Postnikov (1944). The nonlinearities y; are
typically assumed to be continuous, which holds for the neurons
used in neural networks. Nonlinearities y; that have been widely
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studied include the hyperbolic tangent and sigmoid. The nonlinear-
ities can be nondifferentiable, such as a rectified linear unit (ReLU),
which is a nonlinearity used in deep neural networks.
NSSM, GIOM, and DRNN can be represented in SNOF, indicating
that the DANN models are subsets of the SNOF. The matrix M =
A B
C D
the shift operator and the diagonal nonlinear operator I', where
each diagonal element of I' is the nonlinearity associated with a
neuron in the network. The notation SNOF(%I, M, T") can be used
to represent the discrete-time equations

is a linear mapping between the inputs and outputs of

Rt A B, B[
‘1k =|C Dgp Dql|pk| (7)
Yk G Dyp Dyu || ug
that is,
Riy1 = AR + Bppy + By (8)
Gk = CRy + DgpPi + Daqully 9)
Yk = Q& + Dyppi + Dyutty (10)

where the vectors g, and p, are the input and output of the
nonlinear operator (p, = I'(qy)), respectively, A € R™", B, € RMxh,
B, e RAXM, Cq c thn, qu c thh' un c ]thm' Cy c Rlxn‘ Dyp c Rlxh'
Dy, € RI*™M and h is the total number of static nonlinearities. Equa-
tion (7) is similar with the form of state-space equation of a lin-
ear system. The major difference is that the SNOF represents the
connection between the input and output of nonlinear activation
functions.

When the nonlinearities y; are chosen to belong to the set of
sector-bounded nonlinearities and/or monotonic static nonlinear-
ities, the SNOF representation (7) can be expressed as a diago-
nal nonlinear differential inclusion or a Lur’e differential inclusion
(Boyd et al., 1994). The SNOF is also very similar to the LFT, with
the difference being that the operator I in the SNOF is a static
nonlinear operator. For the structure where I' is replaced by a
norm-bounded operator, the (7) becomes the standard form for the
design of robust linear controllers for discrete-time systems. Much
of the same mathematical machinery applies to both model struc-
tures.

For Dgp = 0, the difference equations for the SNOF (7) are all
explicit and solvable by first using (9) to compute g, from %, and
uy, then computing p, from p, = I'(q), and then inserting p; into
(8) and (10) to determine %, ; and y; respectively. The procedure
for simulating the difference equations is the same for Dgp # 0, ex-
cept for one difference, which is that the first step is to insert %
and uy, into

Gk = CoXk + DgpI” (qi) + Dguliy (11)

and numerically solve for g,. There are several ways to solve this
equation, including by zero-finding and fixed point iteration algo-
rithms. One way is to numerically invert the equations off-line, i.e.,
define the function f by

f(qk) =k — DqPF(qk) = Cq)?k + unuka (12)
numerically solve for f~1(.) off-line, and then apply on-line as
Q= f! (CqRy + Dquiy). (13)

This off-line approach is most useful when Dg; is diagonal, as then
the nonlinear operator on the left-hand side of (12) is diagonal,
and the nonlinear inversions in (13) can be solved as independent
scalar equations. For example, for the hyperbolic tangent activation
function, each element of f is defined by

fi(Qri) := Qi — Dgp,ii tanh gy ; (14)



PR. Jeon, M.S. Hong and R.D. Braatz

which are scalar nonlinearities where the Dgp;; are scalars. The
nonlinear inverse f~! is then the collection of scalar nonlinear in-
verses into a vector,

=0 (15)

An advantage of setting Dgp to be zero during the training of a
SNOF is that the on-line computational cost is lower when the
model is used for real-time estimation and control.

2.3.1. Loop transformation

The nonlinear stability analysis tools for SNOFs exploit the
fact that each nonlinearity y; lies within a sector. When the sec-
tor bounds assumed in a stability analysis condition does not
match with the sector bounds in the SNOF, a loop transformation
(Desoer and Vidyasagar, 1975) can be used to produce an equiva-
lent SNOF.

2.3.2. Lur’e system stability

Consider a closed-loop system representable as a linear time-
invariant (LTI) system interconnected with a static nonlinearity
I:

Rir1 = ARy + Bpy (16)
qrx = C))Zk
pe=T(q) (16)

This system is said to be absolutely stable if its equilibrium point at
the origin is globally uniformly asymptotically stable for all mem-
oryless nonlinearities in a given sector (Khalil and Grizzle, 2002;
Vidyasagar, 2002).

The first absolute stability result was published based on the di-
rect Lyapunov method (Lyapunov, 1892). A new form of Lyapunov
function for nonlinear system was suggested by Lur'e and V.N.
Postnikov (Lur'e and Postnikov, 1944), and numerous publications
have employed this method (Liberzon, 2006). A different method
to derive absolute stability conditions was proposed based on a
frequency-domain approach (Popov, 1961). Thereafter, the general-
ized Kalman-Popov-Yakubovich lemma for multivariable systems
was established (Gantmacher and Yakubovich, 1966; Popov, 1964).
A popular quadratic criterion to study absolute stability was for-
mulated (Yakubovich, 1998). The Lur’e system is a well-known
benchmark problem, in which the system (16) satisfies: 1) (A, B,
C) is a minimal realization, and 2) the nonlinear operator I': R™ x
Z, — R™ is memoryless and sector-bounded, that is, lies within
the sector-bound <1>£%‘°‘], ie, [ (0. k) - oll@; yi(o, k) —o] <
0,VoeR, keZ,, ie{l,..., ng} where ng is the number of non-
linearities.

DANNs can be converted into a Lur’e system for which many
sufficient conditions for global asymptotic stability conditions have
been derived, e.g., see Kim et al. (2018) and citations therein. Much
of the literature refers to the stability of the Lur'e system as abso-
lute stability (Khalil and Grizzle, 2002). The next section presents
a necessary condition for the stability of a Lur’e system, which is
also a necessary stability condition when additional constraints are
applied to the nonlinearities y;, such as being odd, monotonic, and
locally slope restricted (Kim et al., 2018).

2.3.3. SNOF representation of DANNs

The SNOF representation of the DANNs can be used to test
where every trajectory of the DANNs (NSSM, GIOM, or DRNN) con-
verges to zero as k — oo. I is typically unit-sector-bounded with
I'(0) =0, such as for the hyperbolic tangent and ReLU neurons,
whereas the output of a sigmoid function does not vanish at the
origin and is not sector-bounded. When the sigmoid function is
chosen as an activation function, the loop transformation can be
used to generate a SNOF with I'(0) =0 that is sector-bounded
(Kim et al., 2018).
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DANNSs can be represented in SNOF, indicating that the SNOF
is a superset of the DANNs. The relationships between the gen-
eral values of the A, B, C in a SNOF to the particular values for the
DANNSs, derived using block diagram algebra, are given below.

e The NSSM can be written as

Xiey1 0 Wp O 0 X

qx,k — VA 0 0 VB px, k (17)
dy k Vee O 0 Vo f|pyxl

Yk 0 0 Wp O Uy,

The A matrix is the zero matrix of nxn dimensions, By =
[Wag Onpy |, Bu = Onm, Cg = [V V1", G = Oy, and Dgp = O, 1,
Dqu = [Vy V1T, Dyp = [0y, Wep), Dyu = Oy .

The GIOM can be represented as ., ; = W, tanh(q,) where

Gk = Vadk+ -+ VarPkora
+Veuy + Vg qtgq + -+ + VB g—1Ug_g11

1 1 1
= (EVAJ + ;VA.z ++ ?VA.r>WAPk
1 1
+ (Vc + EVB.l +-+ FVB,qq)Uk (18)

where z1 is the backward shift operator. For the general r =
q — 1 case, the minimal realization can be written as

1,
h
A= ,
o
L Elh rhxrh
[0, I, O Op
O O0p I
A= . ,
. 0,
0, On O0n Iy
—Oh o o Oh Oh rhxrh
(Va1 Wa V.1
Va 2Wa Vs.2
Bp = . 5 Bu = . 3
[ VarWa rhxh Vi.g-1 rhxm
Cq =[x Oy - Oh]hxrh* qu = 0p, un =V
Cy = Ohxrha Dyp = WA7 Dyu = Oh.m- (19)

In the case of r#q—1, the r in (19) is substituted by r' =
max{r, q — 1}, and some elements (e.g., V4  or Vg 4_1) are zero.
e The DRNN can be written as

Xk+1 —ol  Wag 0 0 Xk
qx.k VA 0 0 Vg Dx.k
= S 20
y k Ve 0 0 Wl pyk (20)
Y 0 0 Wep 0 Uy

The A matrix is —«l,, and the other elements are same as for
NSSM.

The above SNOF representation of GIOM is improved over that
given in a previous study (Kim et al., 2018) which was not a mini-
mal realization. The A matrix in the previous study was (21)

0y1r 0 01,m@g-1 O1m

A= Ilr Olr,l Olr.m(q—l) Olr,m

Om,lr Om,l m,m(q—1) Om
Om@g-1r Omg-n1 In@-1  Om@-1mji1)1mg

(21)
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The above expressions for DANNs imply that the SNOF can
model or parameterize any nonlinear dynamical system with an
arbitrarily small approximation error, just as for DANNs (Kim et al.,
2018).

2.3.4. Controller form of the SNOF

The SNOF in (8)-(10) has excess degrees of freedom. This
section shows how to employ a controller-form realization
(Chen, 1998) to remove this excess, to simplify model identifica-
tion.

The approach is illustrated for an example SNOF that has one
input, one output, three states (n = 3), one neuron (h = 1), Dgp =0,
and Dy, = 0":

-a; —a; —as 1
A=| 1 0 0 |, Bp=]|0]{, (22)
0 1 0 0

1
¢s] Bu= M (23)

G=[cqn
0

G=[on G2 ¢3]. Du=0, (24)

Dyy = [dyu1]. Dgp=0. Dy, =0. (25)

This representation has an equivalent mapping between each vari-
able, where the elements in the above equation can be derived
from an associated transfer function. Searching for the real scalars
in the above equations is less computationally expensive than for
the general SNOF, especially for systems of high state dimension.

2.4. Realization, controllability, observability conditions

For convenience, this section summarizes some well-

established control results used in this article.

2.4.1. Diagonalizable A matrix

For an A matrix with n distinct eigenvalues, the transfer func-
tion of a single-input single-output (SISO) system with n distinct
poles can be represented as

biz" 1+ ...+ b1z + by

, 26
(z+p1)(@+p2)-- (Z+ pa) (26)
which can be rewritten by partial fraction expansion as
c c C
2 (27)
Z+ p1 Z+ D2 Z+ Dn

The realization of the transfer function into diagonal form can be
represented as

—D1 1
A= , B= g (28)
—Dn 1
and
C=lcr - el (29)

Consider an [ x m transfer function matrix for a multi-input
multi-output (MIMO) system G(z) in which every entry of the ma-
trix is a proper coprime fraction. Let

D(z) = (z+p1)(@+p2)--- (Z+ pn-1)(Z+ Pn) (30)

1 The latter condition simplifies the algebra.
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be the least common denominator of all entries of G(z). Then G(z)
can be expressed as

6@ = 55 IN@)]

[NyZV 1+ Noz®2 + -+ Ny 12+ Ny ey

~ Do
where the N; are | x m constant matrices. The G(z) can be written
as a partial fraction expansion,

N 1
Nyt ——Rpy + ——Rn,
g Z+ Pn-1 - Z+ Pn !

(32)

G(z) = Ny +

Z+ p1 Z+ D2

where the N; and p; are computed from the N; and D(z) using
standard formulae (Chen, 1998).
Then a realization of G(z) can be written as

—D1 0 0 0
0 -p, 0O ... 0 1
A=I,®| 0 0 , B=In® . (33)
0 1
0 0 0 —Dn
and
=[N Ry o Ry R (34)

where I, is the m x m unit matrix. The A matrix consists of n rows
and n columns of m x m matrices, and the dimension of A matrix
is nm x nm. The dimension of B matrix is nm x m. The C matrix
consists of n number of N;, whose order is | x m, and the dimen-
sion of C matrix is [ x nm.

Theorem 1. (Theorem 6.D1 in Chen, 1998) The n-dimensional linear
time-invariant state equation with (A, B, C) is controllable if and only
if any of the following equivalent conditions are satisfied:

(1) The n x nm controllability matrix

U2([B:AB:A’B: ... i Av1B] (35)

has rank n, where m is the number of inputs.
(2) For every eigenvalue A; of A, the n x (n+m) matrix [A;]—

Al B] has rank n.

Theorem 2. (Theorem 6.DO1 in Chen, 1998) The n-dimensional linear
time-invariant state equation with (A, B, C) is observable if and only
if any of the following equivalent conditions are satisfied:

(1) The nl x n observability matrix

C
CA

ve| CA (36)

CA;I—‘I
has rank n, where | is the number of outputs.
(2) For every eigenvalue X; of A, the (n+1) x n matrix |:)"Jc_ A]

has rank n.

2.4.2. Non-diagonalizable A matrix

For every square matrix A, there is a similarity transformation
such that A has a Jordan normal form which features the eigenval-
ues with multiplicities collected in its diagonal elements and the
superdiagonal elements being either 0 or 1 (sometimes in the sub-
diagonal elements instead of superdiagonal elements).

The Jordan form A with n states and q distinct eigenvalues with
r(i) geometric multiplicities can be written as

A =diag(A;, ..., Ay (37)
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where A; consists of all Jordan blocks associated with eigenvalue
p;, and
Ai = diag(An, .. ~:AAir(i))~ (38)
The row of B corresponding to the last row of Eij is denoted by
by;j, and the column of ¢ corresponding to the first column of fij
is denoted by cy;;.

For an A matrix with n=5 and the number of distinct eigen-
values q = 3 with multiplicities r(i) = 2, 2, 1, the rational transfer
function of SISO system can be represented as

b1Z4 + b223 + b322 + byz + b5

G(z) = , 39
@ = P2 p2+p) 9

which can be rewritten by partial fraction expansion as
C1 Cy C3 Cy Cs (40)

+ + + + .
(z+p1)? z+p1 (Z+p2)? zZ+p2 Z+D3

The realization of the transfer function into Jordan form can be
represented as

—p 1 0o 0 0 0
0 -p O 0 0 1

A=l 0 0 —p, 1 o |, B=|0], (41)
0 0 0 -p, O 1
0 0 0 0 —p; 1

and

C= [Cl Cy C3 Cyq (,'5].2 (42)

Consider the 2 x 2 transfer matrix of multi-input multi-output
(MIMO) system G(z) in which every entry of the matrix is a proper
coprime fraction. Let

D(2) = (z+ p1)*(z+ p2)*(z + p3) (43)

be the least common denominator of all entries of G(z). Then G(z)
can be expressed as

_ 8@ &)
cw=|28 2] @

S Sz Gi3 Cia Cis
where g = ool + 55 T Gy Tk T
To derive the A, B, and C matrices that constitute M in the SNOF,
construct a minimal realization of G(z), via the Jordan canonical

form which is

—p1 1 0 0 0 0
0 —D1 0 0 0 1
A=I®| O 0 ) 1 0 |,B=I®|0], (45)
0 0 0 —D> 0 1
0 0 0 0 —D3 1
and

C:[Cll Ciz2 €3 Cig C5 €1 Cp (3 (o4 Czs]

(46)

Theorem 3 (Theorem 6.8 in Chen, 1998) The n-dimensional lin-
ear time-invariant Jordan-form dynamical system is controllable if

2 The A matrix in (50) has five degrees of freedom. In (50), the degrees of free-
dom with respect to the values of the eigenvalues is three, and there are two de-
grees of freedom with respect to the superdiagonal elements since each 1 on the
superdiagonal could alternatively be 0. As such, the A matrix for the SNOF has de-
grees of freedom equal to the number of states in the model irrespective of the
number of distinct eigenvalues.
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and only if, for eachi=1,2,...
by

bli2
Bla| (47)

, q, the rows of the r(i) x n matrix

biiriy
are linearly independent. In addition, the system is observable if

and only if, for eachi=1,2,...,q, the columns of the n x r(i) ma-
trix

C,-l £ [ C1ip C]ir(i)] (48)

are linearly independent (over the field of complex numbers).
3. Matrix structure and eigenvalue analysis

In an analysis of a neural network structure, it is important to
investigate how many parameters are optimized during the train-
ing procedure. In this context, the number of degrees of freedom
of a neural network structure is defined as the maximum number
of parameters (weights and biases) that should be fixed to have
a completely distinguishable (distinct) neural network structure.
When a connection between neurons in different hidden layers is
represented as A, B, and C matrices, the size of matrices can be
any size. Given that the uniqueness of the A, B, and C matrices is
conserved for the permutation (Albertini et al., 1993), the matrices
with the minimal condition (with both observability and controlla-
bility) are considered in this study. The number of independent el-
ements in the minimal connection matrices is counted as the num-
ber of degrees of freedom of a neural network structure. When a
neural network model has a larger number of degrees of freedom
than the other model, then the former model can be represented
as a superset of the latter model.

The first insights into limitations of the three DANN model
structures is obtained by inspection of their A, B, and C matrices
when written as a SNOF (see Section 2.3.3). In a SNOF, the A, B,
and C matrices have no restrictions on their structure, as long as
their elements are real. The situation is very different for the three
DANNSs; while the B and C matrices are allowed to have any struc-
ture, the DANNs have very restrictive structures for their A matrix.
(I) 8 , and —al for the NSSM, GIOM, and
DRNN model structures (Section 2.3.3). The eigenvalues of the first
two DANNS are equal to zero, and for the latter DANN are all equal
to —«. These A matrices are highly restrictive compared to a SNOF,
which can have any values for the eigenvalues including complex,
and can have nondiagonal Jordan form. The very restrictive struc-
ture of the A matrices of the DANNs strongly suggests that much
higher dimensionality would be needed in the DANNs to be able
to fit the input-output behavior of nearly all nonlinear dynamical
systems. This observation is consistent with the results of the case
study reported by Kim et al. (2011), in which the SNOF captured
the input-output behavior much more accurately than the DANNs
when all of the model structures were restricted to have the same
number of states and neurons.

The number of degrees of freedom in the A matrix is zero for
the NSSM and GIOM and is one for the DRNN. The restriction of
the A matrices and their eigenvalues for the DANNs are not re-
moved by increasing the number of states. In contrast, the A ma-
trix for the SNOF has degrees of freedom equal to the number of
states in the model (i.e., its row or column dimension). This result
can be proved by applying a nonsingular transformation matrix T
to convert A to its Jordan form. To produce the same input-output
mapping, the matrices B and C must be replaced by TB and CT-!,
respectively, which do not change the number of degrees of free-
dom. The maximum number of degrees of freedom for a Jordan

The A matrices are 0,
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form is equal to the row/column dimension of the matrix A (any
superdiagonal 1 adds a binary degree of freedom but is associated
with a reduction in the number of distinct eigenvalues which re-
moves a real degree of freedom).

4. Degree-of-Freedom analysis

This section derives the number of degrees of freedom for the
SNOF and DANNSs, using simple examples to illustrate the main
idea of the proofs while saving space. To represent the character-
istic of applications in having the same poles appear in multiple
elements, the examples are parameterized in terms of s, which is
the number of distinct poles that can appear in the elements of
the transfer function G(z) = C(zI — A)~'B where the matrices are
defined in (7).

The state equation of the general SNOF (8) can be written as

Z)?k = A)?k + Bppk + Buuk (49)

R = (2 — A) 7' [Bppi + Butiy]. (50)

Insertion of (50) into (9) and (10) results in

i = Cq(2l — A) ™" [BpDy + Buli] + DgpPic + Dguliy (51)
= [Cq(zl = A)™'Bp + Dgplpi + [Cq(zl —A) By 4+ Dgulue ~ (52)
= GgpPk + Gaully (53)

Jx = Cy(zl — A)"'[Bppx + Butt] + Dyppy + Dyulty (54)

= [Cy(zl = A) "By + Dyplpk + [Cy (@l —A) "By + Dyl (55)

= GypDy + Gyully. (56)
Then, the total transfer matrix can be represented with G =
Gop  Gau
where
[G;vp Gyu

Gap = Cq(zl — A)"'Bp + Dyp
Gqu = Cq(zl — A)™'By + Dgy
Gyp = Gy(zl — A)"'B, + Dy,
Gyu = Cy(zl — A)"'By + Dy, (57)

The number of degrees of freedom is first analyzed for a SNOF
in which each element can have up to s = 2 distinct poles and h =
3 neurons to establish a pattern that is used to give the expression
in the general case.

4.1. SNOF With distinct eigenvalues

For s =2, h =3, consider one element of the general trans-
fer function matrix Ggp can be rewritten as Ggp(z) = %qu(z)
where

D(z) = (z+ p1)(z+ p2), (58)
(11(Z+b1) (12(2+b2) as(z + b3)

Nop(2) = [04 (z+bs) as(z+bs) as(z+ bs)], (59)
a;(z+ by) ag(z+bg) ag(z+ bg)
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which by partial fraction expansion can be written as

o d [ d, c d3

Z+p1 + Z+dpz Z+p1 + Z+sz Z+p1 + 231’2

— Cq 4 Cs 5 Ce 6
GQP(Z) | z+ps + Z+Dp; Z+pq + Z+D> Z+D1 + zZ+py | (60)

¢ d; Cg dg Co dg

Z+p1 Z+Dp2 Z+p1 Z+Dp2 Z+p1 Z+Dp2

Both of the above transfer matrices have sh? +s degrees of free-
dom since the p;, aj, and by cannot be changed in any way with-
out changing the input-output relationship for Ggp(z). In the case
of the other elements (Ggp, Gqu, and Gyp), the matrices have same
poles (p; and py), but have independent elements in Ngy € Rh>xm,
Nyp € R™*", and Ny, € RI*™. Therefore, the total number of de-
grees of freedom in the final transfer matrix G = |:G‘“’ un:| is
Gyp  Gyu

s(h> +hm+hl +1lm+1)

To characterize the set of A, B, C matrices in the SNOF that cor-
responds to G(z), write the realization of the transfer function ma-
trix (60) as a diagonal state-space model,

A_miar_ |—Pil O A_r—1p_ |!

A=T AT_|: 0 —p21i|’ B=T B_|:I:|, (61)

and

. a6t G ¢ di dy d;

C=C(CT = Cy Cs Ce d4 d5 de s (62)
c; € Co dy dg dy

where each identity matrix I € R3*3, each zero matrix 0 e R3*3,
and T € R3*3 is any invertible matrix that diagonalizes A.

This state-space model has the same sh? +s degrees of free-
dom. The minimality of this realization of (A, B,C) can be con-
firmed by analyzing the controllability and observability of the sys-
tem. Controllability is shown by noting that

_pam_ |1 —pil
V =[B AB] = [1 _pzl] (63)
has full rank for p; # p,.

Observability holds if [)”ilg A] has the same rank for all of its

eigenvalues A;. Since

Mil — A = diag(A; + p1, Ai + P, Ai + P,

Ai+ D2, Ai + D2, Ai + P2). (64)

the matrix A/ — A has a rank of three since A; is equal to —p; or
—p,, and the matrix € can always choose its first three columns
and its second three columns to be full rank by minor perturba-
tions of ¢; and d;. In other words, € can always be perturbed by an
arbitrarily small amount so that the state-space model is observ-
able, while fitting G(z) arbitrarily closely.

4.2. SNOF For repeated poles

Consider a system with g < s distinct poles p; (1 <i < q) of al-
gebraic multiplicity m;, then the jth entry of the transfer function
matrix associated with the SNOF can be represented as

bj]ZS_] +---+ bjs,lz—i— bjs
(z4+p1)™ ... (z+ pg)™a '
which can be divided into g subsystems
gi(2) =gn@) +---+gj(2), (66)
each of which can be written by partial fraction expansion as

(65)

gi(2) =

Cjai Cjmii
NP LLLL L 67
Z+ p (z+p)m™ (67)

gji(2) =
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Let the number of Jordan blocks associated with pole p; be r; (its
geometric multiplicity); then r; < h for all i to have controllability
and observability.

For up to s =5 states per element and h = 2 neurons, consider
the system with the transfer function matrix,

_ 1 Ny L m@ m2)
Cap(2) = D(Z)N(Z) ~ D(2) [n;(Z) n4(2)]’ (68)

where D(z) = (z+ p1)?(z+ p2)*(z+ p3) and
nj(z):bj]z4+bjzz3+bj322—|—bj4Z+bj5 (69)

for j =1,...,4. The number of real degrees of freedom for this ex-
ample is 225 + 3, which are the values of the bji and p;.

Extrapolating the expressions to general s, h, and ¢, the number
of real degrees of freedom for Ggp is sh? + g. Effectively the exam-
ple has two integer degrees of freedom, which is the number of
poles that are repeated, so the total number of degrees of freedom
for Ggp is sh? +s.

The realization of (68) can be represented as (45) and (46), and
the construction also has sh? + q real degrees of freedom. In the
case of the other elements (Ggp, Gqu, and Gyp), the matrices have
same poles (pj, p2, and p3), but have independent elements in Ny,
Nyp, and Ny, (similar to distinct pole case). Then, final G matrix has
s(h? + hm + hl 4 Im) + q degrees of freedom.

To show controllability of the Jordan form, the last rows of kj;
and kj, are linearly independent, respectively, for all distinct poles
p;i (Theorem 3). For pq, the last row of kq; is [1 0] and of kqy is
[0 1], which are linearly independent. This also holds for p,. For
p3, the last row of k3; is [0 1], which implies that the system is
controllable.

The analysis is similar for showing observability.

4.3. Degrees of freedom for the three DANNs

4.3.1. NSSM
The NSSM is the subset of SNOF in which all eigenvalue are
zero (p; = -+ = ps = 0). For example, for an NSSM with up to s = 1

state per element and h = 2 neurons, the transfer function matrix
is

5% [

Gap(2) = |:523 é,:| (70)
z z

The realization of transfer function matrix into diagonal form

gives

o o [1 o la o
A—[O 0},317—[0 1]Cq—[c3 64]- (71)

The controllability matrix is full rank and the observability matrix
is full rank provided that the matrix Cq is full rank. The set of ma-
trices that is full rank is dense in the space of 2 x 2 real matrices.

Both the transfer function matrix and A, Bp, C; matrices have
only h? = 4 degrees of freedom. In general the number of degrees
of freedom for Ggp is sh?. For NSSM, from B, =0, G, =0, Dgp =
0, and Dy =0, (57) is reduced into Ggy = Dgu = [V Vj 1T, Gyp =
Dyp = [0 Wcpl, Gyu = 0. Therefore, the transfer matrix G has h? +
2hm + hl (Vg, Vp € RPM and Wep e RI*h).

4.3.2. GIOM

The GIOM can be represented as a subset of the general case.
For a GIOM with up to s = 2(r = g — 1 = 2) states per element, h =
3 neurons, and m = 3, the transfer function matrix Ggp(z) of GIOM
can be written as

a b a; b, a b.
z a. b, a. b, a b 7:!
az b; ag bg (€] be
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Table 1
The number of degrees of freedom in the DANNs and SNOF.

Model Structure # of degrees of freedom

SNOF (distinct)
SNOF (general)

s(h> +hm+hl+1Im+1)
s(h? +sm+hl +1m) 4+q

NSSM h? +2hm + hl
GIOM s(h? + hm) + hl
DRNN sh? 4+ 2hm + hl + 1

with state-space matrices given by

0 1 0 0 0 O 0 0 O
0O 0 0 0 0 O 1 0 O
0 0 0 1 0 O 0 0 O
A=1o 0o 0 0o o o' B=lo 1 of (73)
0O 0 0 0 0 1 0 0 O
o 0 0 0 0 O 0 0 1
and
aq b] ay b2 as b3
Cq: ay b4 ds b5 ag b6 . (74)
az b7 asg bg ag bg

The nonsingularity of the controllability matrix implies that (A, Bp)
is controllable, and the observability matrix is nonsingular for al-
most all choices of degrees of freedom.

In both of the above representations, the number of degrees of
freedom for Ggp is 322 = 18 for the example and sh? in general.
From (57),

a b , a b , a b ,
Frz+6 ZF+7+6 F+F7+G
S N SN SN S
un (Z) z2 z Cy 72 z G5 z2 z G | (75)
a b’ a; b; ag by
z% + 77 + C,7 z% + 78 C,8 zg z9 Cé

Gyp = Dyp =W,, and Gy, = 0. Thus, Ggy and Gy, have shm and hl
degrees of freedom, respectively, and the final G matrix have sh? +
shm + hl degrees of freedom.

4.3.3. DRNN
DRNN is the subset of SNOF in which all eigenvalue are same
(p1 =:--=ps). For up to s =1 state per element and h =2 neu-
rons, the corresponding transfer function matrix is
Cy Cy
Ggp(2) = [thl thlil. (76)
Z+py Z+p1

The realization of transfer function matrix into diagonal form can

be written as follows:
—D1 0 1 0 C1 Cy

e A R CR e e
The system is controllable, and is observable for any full-rank ma-
trix Cg. The number of degrees of freedom of A is 1 from p4, and
the total number of degree of freedom of (A, By, Cy) is 1+22 =5.
For a DRNN with up to s states per element and h neurons, the
total number of degrees of freedom of (A, Bp,Cy) is sh? + 1. For
DRNN, from By =0, G, =0, Dgp =0, and Dy, =0, (57) is reduced
into Ggy = Dgu = [V V17, Gyp = Dyp = [0 Wpl, Gyu = 0. Therefore,
the transfer matrix G has sh® +2hm+hl+1 (Vp,Vp € R™™ and
WCD € RIXh).

4.3.4. Summary

Table 1 summarizes the number of degrees of freedom for all of
the model structures. For any fixed number of neurons, the SNOF
has a larger number of degrees of freedom that can be optimized
to fit input-output data of the nonlinear dynamical system dur-
ing model identification. The additional degrees of freedom sug-
gest that, for systems with the relatively low number of neurons
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Fig. 1. NSSM, GIOM, SNOF predictions for the biomass concentration (g/L) for five test operating conditions. The number in parenthesis in the legend is the number of
hidden neurons. The figures in the first row denote test sets 1-3, and in the second row denote test sets 4 and 5.
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Fig. 2. NSSM, GIOM, and SNOF predictions for the glycerol concentration (g/L) for five test operating conditions. The number in parenthesis in the legend implies the number
of hidden neurons. The figures in the first row denote test sets 1-3, and those in the second row denote test sets 4 and 5.

needed to have nonconservative analysis, an accurate SNOF model
has the potential to have fewer neurons than the three popular
DANNs. For example, a SNOF with s=5 and one neuron h=1
would have more degrees of freedom (sh? + s = 10) than an NSSM
or GIOM with one state and three neurons (sh? = 9). These results
motivate the further exploration of methods for the optimal train-
ing of SNOFs and their application to specific processes, to demon-
strate the expected reduction in conservatism when applying rig-
orous analysis and synthesis methods compared to DANNS.

5. Case study

This section compare the performance and compactness of the
DANNSs and SNOF for a system with highly nonlinear dynamics.

5.1. Multistage bioreactor model

Most biochemical processes have nonlinear kinetics. Pichia pas-
toris is used to manufacture many proteins, due in part to its fast

growth and in part to its easy regulation (Ren et al, 2003). A
mechanistic model describing the growth and energy metabolism
of Pichia pastoris cells producing protein in a bioreactor with var-
ious operation modes serves as the “true process” for comparing
the size of DANNs and SNOF needed to model the input-output be-
havior of the process. The process consists of two stages. At first,
the cells are fed glycerol to grow biomass in fed-batch mode with
a step glycerol feed. The second stage is methanol growth in fed-
batch mode with two methanol feed steps, in which feed rates are
increasing in the second step. In this study, a macroscopic biore-
actor model for the process is used to produce datasets, which
are used in identification (i.e., training) and testing the DANNs and
SNOF models. The differential equations for the mass balances for
the system are

dX  Ey
a V(Xin—x)‘f‘(,ug-i-ﬂrn)x (78)
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Fig. 3. NSSM, GIOM, and SNOF predictions for the methanol concentration (g/L) for five test operating conditions. The number in parenthesis in the legend implies the
number of hidden neurons. The figures in the first row denote test sets 1-3, and those in the second row denote test sets 4 and 5.
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Fig. 4. NSSM, GIOM, and SNOF predictions for the product concentration (g/L) for five test operating conditions. The number in parenthesis in the legend implies the number
of hidden neurons. The figures in the first row denote test set 1-3, and those in the second row denote test sets 4 and 5.

ds, E

Tf = ‘17 (Sin,g - Sg) — (s gX (79)
dSm E

dr = #(Sin,m —Sm) — @s;mX (80)
dp Fn

E:—VP-FQPX (81)

where X is the concentration of biomass from dry weight (g/L), F
is the glycerol or methanol feed rate (mL/h) in which subscripts
in and out denote inlet and outlet respectively, V is the medium
volume (L), ug is the specific growth rate (1/h), S;, is the inlet
substrate concentration (g/L), S is the limiting substrate concentra-
tion, g5 is the specific rate of substrate consumption (g/g-h), P is
the concentration of product (g/L), gp is the specific rate of prod-
uct generation (g/g-h), and subscripts g and m denote glycerol and
methanol, respectively.

10

The specific rate of substrate consumption qg; (g substrate/g
biomass-h) in the substrate limitation regime was assumed to fol-
low Monod kinetics (Monod, 1949),

max Si

Asi = qs; m,

where g"#™ is the specific maximum rate of substrate consumption
(g substrate/g biomass-h) and Kj; is the saturation constant (g/L).

The specific growth rate at the limiting substrate w; (1/h) was
calculated from the difference between the specific rate of sub-
strate consumption and maintenance multiplied by the yield co-
efficient,

(82)

Mi= (QS,i - Qm,i)Yem,i’ (83)

where ¢, ; is the maintenance coefficient (g/g-h) and Y, ; is the
biomass yield coefficient exclusive maintenance (g/g). The specific
production rate gp (g/g-h) was assumed to follow a specific en-
zyme model (Hong et al., 2021). The responsible enzyme for pro-
tein secretion is assumed to be only active when the enzyme E is
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Fig. 5. NSSM, GIOM, and SNOF predictions for the medium volume (L) for five test operating conditions. The number in parenthesis in the legend implies the number of
hidden neurons. The figures in the first row denote test sets 1-3, and those in the second row denote test sets 4 and 5.

Table 2 Table 4
The parameters used in the simulation. The operating conditions for the training and test datasets (F,; =1 mL/h).
Symbol Unit Glycerol Methanol Data set No. Sing (g/L) Fn.m (mL/h) Sinm (/L)
Ks; g/L 0.1 0.1 Bl B2,
Gm.i g/g-h 0 0.013 —
gmx a/g-h 037 057 Training 1 250 1.1848 1.2867 780.0
s g/l 250-750 780-1170 2 250 0.8112 0.9501 877.5
Yor i elg 07 036 3 250 0.8025 1.4978 975.0
Fo mL/h 1 07-15 4 250 1.2297 1.3274 1170.0
oKy £ 3.42 5 375 0.7469 0.7775 780.0
ap - 232 69.0 6 375 0.7693 1.1490 975.0
7 375 1.1932 1.4711 1072.5
8 375 0.9969 1.1594 1170.0
Table 3 9 500 0.8615 1.0617 780.0
The operational modes. 10 500 0.8561 1.1554 877.5
11 500 1.0811 1.1670 975.0
Operation Mode 1 2 3 12 500 1.1143 1.3585 1072.5
Feed inlet (mL/h) Fug El B 13 500 0.7552 1.2858 1170.0
Feed inlet Glycerol Sing 0 0 14 625 0.8636 1.3624 877.5
Concentration (g/L) Methanol 0 Sinm Sinm 15 625 0.9409 13974 1072.5
Operation Time (h) 5 5 5 16 625 1.1717 1.4854 1170.0
17 750 1.0454 1.1071 877.5
18 750 1.2672 1.4328 975.0
19 750 1.1711 1.4125 1072.5
Ko 20 750 0.9738 1.2095 1170.0
deprotonated: EHT = E + H*, where K, ¢ is the acid dissociation Test 1 250 0.8432 1.3023 1072.5
constant for the enzyme. Then the specific total production rate of ; g;g 1;?2; 1-3?33 3;(7)-3
the active enzyme is 4 625 1.1940 1.1942 975.0
Opilki 5 750 0.8011 1.0538 780.0

qpi (84)

= 10PKee—PH 1+ ]
where ap; is the growth-associated proportional coefficient. The
parameters of the model are obtained in the literature (Hong et al.,
2021) and shown in Table 2. The pH of system was fixed to 6.5,
and the precipitation reaction in the medium and the intracellu-
lar changes in carbon and nitrogen concentrations in protein were
assumed to be negligible.

This particular bioreactor operation was selected because of its
increased nonlinear dynamics associated with the discrete jump in
its model parameters when transitioning between a glycerol and
methanol feed.

5.2. Global optimization with multistart
For the identification procedure (i.e., network training), multi-

ple algorithms are available for finding the weights and biases to
minimize the error function, which is typically the sum-of-squared

1

differences between the model predictions and data. Gradient-
based algorithms can converge quickly, but usually only to local
minima. So-called “global optimization algorithms” such as evolu-
tionary algorithms have been applied to network training, which
can converge to single or multiple global minima (Volgis and La-
garis, 2006). Such global minima may have the same fit to data
for the data used for model evaluation, but may produce different
predictions or interpolations when fed different inputs.

The multistart method, which runs optimization algorithms
for many random choices for initial guesses, is widely applied
in parameter estimation. When a large enough number of well-
distributed starting points are used, the method can find the
basin of attraction which includes the global optima (Peri and
Tinti, 2012). In this study, the training of DANNs and SNOF was
repeated until eight initial guesses converged to the same mini-
mum error, with thousands of starting points made randomly in
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Averaged Relative Error (%)

h n SNOF NSSM h q r GIOM
Biomass concentration (g/L) 1 1 1.01 2.00 1 2 1 2.10
Glycerol concentration (g/L) 1 1 2.83 15.12 1 2 1 15.36
2 2 5.58 2 2 1 1.50
Methanol concentration (g/L) 1 1 7.14 24.79 1 2 1 7.61
2 2 2.00 12.44 2 2 1 431
3 3 2.10
Product concentration (g/L) 1 1 1.85 10.5 1 2 1 6.24
2 2 1.78 2 2 1 1.79
Medium volume (L) 1 1 1.00 1.30 1 2 1 1.04

the range of [—1,1] to learn the best weights to predict the test
set well.

5.3. Model identification

5.3.1. Simulation details

Datasets were produced by running twenty-five simulations for
a total process time of 15 h, with a sampling period of 3 minutes
for on-line measurements of four input variables (F, g, Finm, Sing
and S;, ,) and five output variables (X, Sg, Sm, P, and V), respec-
tively. The detailed operational modes of the multistage bioreactor
are listed in Table 3.

The initial states of bioreactors are fixed to the same for all
simulations: Xp =45 gJL, Sgo =Spo =Py =0 g/L, and V5 =0.15 L.
The simulations provide a wide variation in the datasets by varying
feed rates and concentrations.

For the first stage (semi-batch glycerol feed), the initial feed
rate of glycerol (F;, ) was fixed to 1 mL/h while the initial concen-
tration of the glycerol in feed (S;, ) ranged from 250 to 750 g/L.
For the second stage (semi-batch on methanol feed), the first and
second feed rate of methanol (F,.}Lm and Fiﬁ.m) ranged from 0.7 to
1.5 mL/h while the initial concentration of the methanol in feed
(Sin.m) ranged from 780 to 1170 g/L. All bioreactors were simu-
lated with additive white Gaussian noise (¢ = 0.1) in the inputs
and outputs.

5.3.2. Training procedure

After the simulations, twenty datasets were randomly allocated
to the training set while the remaining datasets were allocated to
test set. The detailed conditions of resulted training and test set at
each operational mode are given in Table 4.

The minimum and maximum values of input variables and out-
put variable in the training set were used to normalize all data
into the range of [0,1]. In order to find out the required num-
ber of neurons to capture the dynamics of each output, the DANNs
and SNOF were trained in the form of four inputs and one output,
respectively. The training was conducted with back-propagation
through time that minimizes the Mean Squared Error (MSE) be-
tween target and corresponding one-step-head prediction of the
training set. The DAANs and SNOF were trained with the mul-
tiple initial guesses, and the prediction accuracy of the trained
DANNs and SNOF was quantified in terms of MSE when applying
the model to the test set. The performance of DANNs and SNOF
was estimated after the re-scaling of the prediction into the origi-
nal range. In order to compare the relative performance on output
variables, the averaged relative error for j output (ARE;) was cal-
culated by

5  /MSE..
ARE;(%) = 1 > ﬂ x 100 (85)
S
where MSE;; is the mean squared error of jth output ith test set,
and f,-j is the mean value of jth target in ith test set.

12

5.3.3. Structure of the ANNs and SNOF

In this study, the structure of the DANNs and SNOF consisted
of one input layer, one hidden layer, and one output layer. The ac-
tivation function in the hidden layer was chosen as a hyperbolic
tangent, and that in the output layer was a linear function. The
bias terms in the DANNs and SNOF were all removed. For the one
hidden neuron case of the NSSM, (17) was simplified to

Xk+1 0 WAB 0 Xk
Gk |=| Va 0 V|| Dxk (86)
Yk Wep O 0 ][ w

In the case of the SNOF, Dgp and Dy, were set to zero to simplify
the model identification algorithm.

5.3.4. Performance comparison

The general SNOF, NSSM, and GIOM are compared for 4-input
1-output modelling in terms of the ARE in Table 5 and transient
responses in Figures 1-5 for the test datasets. The SNOF has the
best performance for every output when the models have the same
number of hidden neurons, in some cases by nearly an order of
magnitude lower ARE. For the NSSM, 3 hidden neurons were re-
quired to fit the methanol concentration, and 2 hidden neurons
for the glycerol and product concentrations. GIOM also needed 2
hidden neurons to fit the glycerol, methanol, and product concen-
trations. The SNOF is observed to be the most compact model. A
SNOF with a single neuron has low prediction error for the pre-
diction of all of the variables except for methanol concentration, in
which two neurons was needed. The one-neuron DANNs had large
errors for all of the concentrations, in several cases by about a fac-
tor of five.

6. Conclusions

Dynamic artificial neural networks are widely reported in in-
dustrial applications without having any theoretical guarantees of
stability or performance. Academic studies have derived sufficient
conditions to provide theoretical conditions for proving stability,
but the results tend to be conservative for large numbers of neu-
rons.

This article analyzes the matrix structures and degrees of free-
dom to assess the relative ability of the standard normal operator
form and three popular dynamic artificial neural network models
to fit the input-output behavior of nonlinear dynamical systems. A
series of examples were used to illustrate the construction of the
real matrix that specifies a SNOF, and to show that the matrix con-
structions for the DANNs have fewer degrees of freedom than the
SNOF. For a multistage bioreactor, the SNOF is observed to be have
much lower average relative error than the DANNs, when the mod-
els have the same number of neurons. Typically the SNOF resulted
in accurate predictions even when having only a single neuron.
The results imply that SNOF is a promising neural network model
structure for the identification and control of nonlinear dynamical
systems.
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Appendix A
Al. Lyapunov function

Lyapunov analysis is widely used for assessing whether a non-
linear dynamical system is stable. Lyapunov’s method for discrete-
time systems is "A system of the form X, ;= f(X;) is globally
asymptotically stable at the origin if there exists a function V, re-
ferred to as the Lyapunov function, such that (1) V(Req) =0 and
V(&) >0 for all X #£0, (2) AV (%) =V (Ry,q) —V(R,) <0 for all
R, #0, and (3) V(%) — oo as ||%|| — oo (Brogan, 1991).”

The application of Lyapunov analysis to Lure systems employs
the Lyapunov function:

V%) zxgmkuiki /qu_i $i(0)do, (87)
n=1

or some variation thereof, where X, is the extended state vector
Xk
Dk |»
Ak

and P is a positive definite matrix and A; are non-negative real
numbers that serve as unknowns to be determined in the Lya-
punov analysis. The Lyapunov function satisfies condition (1) by
construction. Both p, and g, are functions of the state variable
vector X, and the above Lyapunov function is radially unbounded
and positive for all nonzero x;, € R", which satisfies condition (2).
As shown in the second term on the right-hand side of (87),
the Lyapunov equation is a linear function of the nonlinearities.
When deriving an algebraic condition for ensuring that condition
(3) holds, the latter terms in (87) result in a nonconvex set of in-
equalities, which are then convexified by applying the S-procedure
(Boyd et al., 1994). The S-procedure introduces conservatism for
each term in the summation in (87), which increases as the num-
ber of nonlinear terms increases (Kim, 2009).

X 2 (88)
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