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a b s t r a c t 

Dynamic artificial neural networks (DANNs) have become popular for the data-driven modelling of non- 

linear dynamical systems. This article elucidates properties of a compact DANN model structure called the 

standard normal operator form (SNOF). Sets of nonlinear dynamical systems are characterized for which 

the SNOF can achieve the same model identification error with fewer neurons than needed by the pop- 

ular DANN model structures. The results are demonstrated in a case study for a multi-stage bioreactor, 

which is a highly nonlinear dynamical system in which the cells have a sharp change in dynamics during 

a change in the feed composition as the bioreactor shifts from growth mode to production mode. The 

ability of the SNOF to model highly nonlinear dynamical systems with a very small number of neurons 

suggests its potential for serving as a basis for the design of model-based optimal control systems with 

theoretical guarantees of closed-loop stability and performance. 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

The ability of any static nonlinear function to be approximated 

ithin any degree of accuracy by an artificial neural network 

ANN) initiated their wide application for black-box identification 

f nonlinear dynamical systems. In particular, dynamical ANNs 

DANNs) are the models that have been used in nonlinear control 

echnologies by Rockwell/Pavilion and AspenTech for more than 

wenty years ( Qin and Badgwell, 2003 ). While DANN-based con- 

rol algorithms have been developed and applied for decades, the 

ontrol design and the closed-loop dynamics achieved in indus- 

rial applications are not grounded in control theory. More specifi- 

ally, the industrial control design methods provide no stability or 

erformance guarantees, and the DANN-based control designs can 

estabilize the closed-loop system. This situation is addressed in 

ndustrial applications by carrying out extensive closed-loop simu- 

ations over wide variations in operating conditions, and re-tuning 

he control weights until closed-loop stability is achieved while 

inimizing oscillations and overshoot. Because any finite number 

f closed-loop simulations cannot cover all of the potential operat- 

ng conditions of the system, DANN-based control systems need to 

e conservatively tuned (that is, to have sluggish performance) to 
∗ Corresponding author at: 77 Massachusetts Avenue, Room E19-551, Cambridge, 

A 02139. 

E-mail address: braatz@mit.edu (R.D. Braatz). 
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rovide strong confidence of their reliability when applied to the 

eal system. This situation is an especial concern for applications 

n the manufacturing of small-molecule pharmaceuticals and bio- 

herapeutics, in which a deviation from the desired product quality 

ttributes can result in adverse side affects ( FDA, 1999 ). 

Many researchers in the academic control communities in the 

ast several decades have worked to provide a theoretical founda- 

ion for the stability analysis of DANNs (e.g. see the reviews by 

uykens et al., 1996 and Kim et al., 2018 and citations therein). 

n particular, many sufficient conditions have been derived for the 

lobal asymptotic stability of a DANN. In short, the analysis tools 

end to be least conservative when the number of neurons is small. 

ore precisely, the number of terms that introduce conservatism 

n such Lyapunov analysis based on any of the model structures 

s proportional to the number of neurons. Since a closed-loop sys- 

em in which the process and controller are each written as DANNs 

an be written as one large DANN by applying block diagram alge- 

ra (e.g., Desoer and Vidyasagar, 1975 ), these stability conditions 

re theoretically applicable to both open- and closed-loop systems. 

he theoretical results that produce the tightest (aka least conser- 

ative) conditions apply the Lyapunov method ( La Salle and Lef- 

chetz, 1961 ) to a Lur’e-Postnikov function ( Forti and Tesi, 1995 ) 

o derive a set of inequalities which, if feasible, implies that the 

ANN is globally asymptotically stable. These Lyapunov functions 

onsist of a quadratic function plus the sum over the number of 

eurons of some function of the neuron. Each term in the sum 

https://doi.org/10.1016/j.compchemeng.2022.107674
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compchemeng
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compchemeng.2022.107674&domain=pdf
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d

s subsequently bounded while introducing some conservatism. 

he introduction of each additional neuron to a DANN results in 

ntroducing another conservative step in the Lyapunov analysis, 

o that the overall stability condition tends to be too conserva- 

ive to be practically useful for DANNs with a large number of 

eurons. 

For the theoretical results to be sufficiently nonconservative to 

e practically useful in applications, an important consideration is 

he number of neurons needed by a DANN model structure to be 

ble to describe the input-output dynamics of the system. The ar- 

icle provides insights into the number of required neurons for all 

hree popular classes of nonlinear dynamic ANN (DANN) model 

tructures: the Neural State-Space Model (NSSM), Global Input- 

utput Model (GIOM), and Dynamic Recurrent Neural Network 

DRNN). The NSSM is a nonlinear dynamical state-space model 

n which nonlinearities are parameterized by a feedforward ANN 

FANN) ( Suykens et al., 1995 ). The GIOM has a recursive input- 

utput structure, in which prediction is made from a finite mea- 

urement of past inputs and outputs, and the nonlinearities of the 

ystem are parameterized by FANNs ( Billings et al., 1992; Levin 

nd Narendra, 1995; Narendra and Parthasarathy, 1990 ). The struc- 

ure of the DRNN is nearly the same as the NSSM, but with a lin-

ar recursive term added to the state equation for the DRNN ( Jin 

nd Gupta, 1996; Fang and Kincaid, 1996 ). The property that ANNs 

an approximate any nonlinear function with arbitrarily small er- 

or ( Cybenko, 1989 ) can be used to show that all three classes of

ANNs can approximate nonlinear dynamical systems within any 

rbitrarily small error ( Kim et al., 2018 ), making them suitable as a

asis for the black-box modeling and control of nonlinear dynami- 

al systems. 

After the above background analysis, the article considers the 

tandard nonlinear operator form (SNOF), which is a nonlin- 

ar model structure that can be shown to approximate nonlin- 

ar dynamical systems with arbitrarily small approximation error 

 Kim et al., 2018 ). The analysis motivates the use of the SNOF, in-

tead of the three DANNs, as a theoretically rigorous and practi- 

ally useful basis for the analysis and control of nonlinear dynam- 

cal systems. 

Although not the main focus of this article, it is worth men- 

ioning that all three of the aforementioned DANNs can be trans- 

ormed into an equivalent SNOF, so global asymptotic stability of 

he three DANNs can be assessed by analyzing the stability of their 

NOFs. In particular, any less conservative stability conditions de- 

ived for a SNOF can be immediately applied to the three DANNs 

 Kim et al., 2018 ). For any of these model structures, the conser-

atism of applying Lyapunov analysis is based on the number of 

eurons in a model, which motivates the focus here of comparing 

he model structures in terms of the number of neurons needed to 

odel a nonlinear dynamical system. The preferred model struc- 

ure is that which is most “compact,” which in this context refers 

o having the smallest number of neurons needed to fit data with 

mall model error. 

A relevant prior result is that an example has been published 

n which a best-fit SNOF had a smaller model error than best- 

t DANNs when all were restricted to have the same number of 

eurons ( Kim et al., 2011 ). This article provides a deeper structural 

omparison between the different model structures. We show that 

he 3 DANNs have highly restrictive model structures compared to 

he SNOF. Then we derive the number of degrees of freedom in the 

ifferent model structures for a class of simple nonlinear dynami- 

al systems, which provides enough insight to derive the results for 

rbitrary numbers of states and neurons. Then DANNs and SNOF 

re compared in terms of their ability to model the input to state 

elationships for a multistage bioreactor with highly nonlinear dy- 

amics, which show that the SNOF is able to model the nonlinear 

ynamic relationships with only one or two neurons. 
2 
This paper is organized as follows. Section 2 provides mathe- 

atical background and defines nomenclature for ANNs, DANNs, 

nd SNOF. Section 3 analyzes the different DANN model structures 

n terms of their matrix structure and eigenvalues, after being re- 

ormulated as SNOFs. Section 4 derives the number of degrees of 

reedom for the DANNs and SNOF, illustrating the calculations in 

imple examples. Section 5 provides the bioreactor case study, and 

ection 6 concludes the paper. 

. Theoretical background 

This section provides some background on ANNs, DANNs, SNOF, 

nd some results in controllability and observability used later in 

he article. 

.1. Architecture of artificial neural networks 

An artificial neural network (ANN) can approximate any nonlin- 

ar relationship with bounded input and bounded output with ar- 

itrarily small approximation error ( Cybenko, 1989 ). The basic pro- 

essing unit of an ANN is called a neuron, the collection of the 

eurons is called a layer, and the interconnection of the layers con- 

titutes an ANN. The architecture of ANN refers to how the layers 

re interconnected with each other. A neuron can be represented 

s y = γ ( 
∑ m 

i =1 w i s i + β) where γ is a nonlinear function referred

o as an activation function, w = [ w 1 , w 2 , · · · , w m 

] 
� 

is a weight 

ector which represents connection between the neuron and pre- 

ious layer, s i are the inputs dispatched from the previous layer to 

he neuron, and β is a bias term. For the activation function γ , 

 monotonic function bounded in the interval is usually selected 

uch as hyperbolic tangent function ∈ [ −1 , 1] or sigmoid function 

 [0 , 1] . The most popular ANN architecture is the Feedforward 

NN (FANN) in which input, hidden, and output layers are con- 

ected in series. The activation function of the output layer is usu- 

lly chosen as a linear function ( Levin and Narendra, 1995 ), and the

ANN can be represented as y = 

∑ h 
i =1 w i γ ( 

∑ m 

j=1 v i j u j + βi ) , where

 i j represents the weight between the jth neuron in the input layer 

nd the i th neuron in the hidden layer, w i represents the weight 

etween the jth neuron in the hidden layer and the neuron in the 

utput layer. 

.2. Dynamic artificial neural network model structures 

A discrete-time state-space system can be represented as 

 k +1 = f (x k , u k ) + v k ; x (0) = x 0 

 k = g(x k , u k ) + w k 

(1) 

here y ∈ R 

l , u ∈ R 

m , x ∈ R 

n , v ∈ R 

n , and w ∈ R 

l represent the

utput, input, state, process noise, and measurement noise; f : 

 

n × R 

m → R 

n and g : R 

n × R 

m → R 

l are assumed to be piecewise

ontinuously differentiable nonlinear mappings. The parameterized 

odel for (1) can be represented as 

ˆ 
 k +1 = 

ˆ f ( ̂  x k , u k ; θ f ) + ̂

 v k ; ˆ x (0) = 

ˆ x 0 

ˆ 
 k = 

ˆ g ( ̂  x k , u k ; θg ) + 

ˆ w k 

(2) 

here ˆ y ∈ R 

l and ˆ x ∈ R 

n represent the output predictor vector, 

tate predictor vector, θ f and θg are vectors of model parameters 

o be estimated, ˆ x 0 is the initial condition of the model’s state, 

nd 

ˆ v ∈ R 

n and ˆ w ∈ R 

l are modeled as Gaussian random processes 

ith prior known means and standard deviations. The identifica- 

ion of the process model is the determination of θ f and θg such 

hat real process (1) is closely approximated by (2) ( Kim et al., 

018 ). In practice, given the existence and uniqueness of solution 

or the dynamical system, the norm-bounded trajectories of the 

ifference between (1) and (2) are used to represent the closeness 
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f the approximation ( Kim et al., 2018 ). Three popular parameter- 

zed model structures used to approximate a nonlinear dynamical 

ystem are NSSM, GIOM, and DRNN. In the parameterization of the 

lgebraic nonlinearity in each model structure, a FANN is used, 

nd dynamic backpropagation algorithms are used in determin- 

ng (aka training) the unknown model parameters ( Narendra and 

arthasarathy, 1990 ). The mathematical structures of the models 

re given below. 

.2.1. Neural state-space model (NSSM) 

This state-space model uses FANNs to represent nonlinear map- 

ings in the state and output equations ( Suykens et al., 1995 ). The

onlinear mappings of equations are chosen to have one hidden 

ayer, respectively, and the dynamic of the nonlinear system can 

e represented as 

ˆ 
 k +1 = W AB tanh (V A ̂  x k + V B u k + βAB ) + v k 

ˆ 
 k = W CD tanh (V C ̂  x k + V D u k + βCD ) + w k 

(3) 

here ˆ y k ∈ R 

l , u ∈ R 

m , and ˆ x k ∈ R 

n are the output, input, and state;

 x and h y ∈ Z 

+ are the number of neurons in the state and out-

ut equations, V A ∈ R 

h x ×n , V B ∈ R 

h x ×m , W AB ∈ R 

n ×h x , βAB ∈ R 

h x , V C ∈
 

h y ×n , V D ∈ R 

h y ×m , βCD ∈ R 

h y , and W CD ∈ R 

l×h y are the parameters

o be estimated in the FANNs. The generality and completeness of 

SSM has been proved ( Kim et al., 2018 ). 

.2.2. Global input-output model (GIOM) 

The nonlinear input-output model structure 

ˆ 
 k +1 = 

ˆ g (u k , . . . , u k −q +1 , ̂  y k , . . . , ̂  y k −r+1 ) + v k (4) 

ses past observations of input and output to predict future out- 

ut ( Levin and Narendra, 1995; Narendra and Parthasarathy, 1990 ), 

here q and r are the input and output time horizons, respectively. 

eplacing ˆ g with a neural network results in the GIOM 

ˆ 
 k +1 = W A tanh (V A ̂

 Y r k + V B U 

q −1 

k −1 
+ V C u k + β) + v k (5)

here ˆ Y r 
k 

� [ ̂  y � 
k 
, . . . , ̂  y � 

k −r+1 
] � ∈ R 

lr×1 , U 

q −1 

k −1 
� [ u � 

k −1 
, . . . , u � 

k −q +1 
] � ∈

 

m (q −1) ×1 , W A ∈ R 

l×h , V A ∈ R 

h ×lr , V B ∈ R 

h ×m (q −1) , V C ∈ R 

h ×m , and

∈ R 

h . The generality and completeness of GIOM has been proved 

 Levin and Narendra, 1995 ). 

.2.3. Dynamic recurrent neural network (DRNN) 

The DRNN

ˆ 
 k +1 = −α ˆ x k + W AB tanh (V A ̂  x k + V B u k + βAB ) + v k 

ˆ 
 k = W CD tanh (V C ̂  x k + V D u k + βCD ) + w k 

(6) 

ncludes a recursive term in the state equation ( Jin and Gupta, 

996; Fang and Kincaid, 1996 ), where α is the self-feedback pa- 

ameter chosen to satisfy 0 < α ≤ 1 and controls the incremental 

ecay of state. The generality and completeness of DRNN has been 

roved ( Jin and Gupta, 1996 ). 

.3. Standard nonlinear operator form (SNOF) 

In modern robust linear control theory, the Linear Fractional 

ransformation (LFT) is a standard structure for representing linear 

ystems with some forms of uncertainty. Some past publications 

e.g., Suykens et al., 1995 ) have incorrectly stated that the NSSM 

an be represented as an LFT. In actuality, the NSSM and other 

ANNs can be written in the Standard Nonlinear Operator Form 

SNOF), which is a nonlinear model structure in which a linear 

ime-invariant dynamical system is connected to feedback with a 

ounded static nonlinear operator that has been studied since the 

arly 1940s by Lur’e and Postnikov (1944) . The nonlinearities γi are 

ypically assumed to be continuous, which holds for the neurons 

sed in neural networks. Nonlinearities γ that have been widely 
i 

3 
tudied include the hyperbolic tangent and sigmoid. The nonlinear- 

ties can be nondifferentiable, such as a rectified linear unit (ReLU), 

hich is a nonlinearity used in deep neural networks. 

NSSM, GIOM, and DRNN can be represented in SNOF, indicating 

hat the DANN models are subsets of the SNOF. The matrix M = 

A B 

C D 

]
is a linear mapping between the inputs and outputs of 

he shift operator and the diagonal nonlinear operator �, where 

ach diagonal element of � is the nonlinearity associated with a 

euron in the network. The notation SNOF( 1 z I, M, �) can be used 

o represent the discrete-time equations 
 

ˆ x k +1 

q k 
ˆ y k 

] 

= 

[ 

A B p B u 

C q D qp D qu 

C y D yp D yu 

] [ 

ˆ x k 
p k 
u k 

] 

, (7) 

hat is, 

ˆ 
 k +1 = A ̂

 x k + B p p k + B u u k (8) 

 k = C q ̂  x k + D qp p k + D qu u k (9) 

ˆ 
 k = C y ̂  x k + D yp p k + D yu u k (10) 

here the vectors q k and p k are the input and output of the 

onlinear operator ( p k = �(q k ) ), respectively, A ∈ R 

n ×n , B p ∈ R 

n ×h ,

 u ∈ R 

n ×m , C q ∈ R 

h ×n , D qp ∈ R 

h ×h , D qu ∈ R 

h ×m , C y ∈ R 

l×n , D yp ∈ R 

l×h ,

 yu ∈ R 

l×m , and h is the total number of static nonlinearities. Equa- 

ion (7) is similar with the form of state-space equation of a lin- 

ar system. The major difference is that the SNOF represents the 

onnection between the input and output of nonlinear activation 

unctions. 

When the nonlinearities γi are chosen to belong to the set of 

ector-bounded nonlinearities and/or monotonic static nonlinear- 

ties, the SNOF representation (7) can be expressed as a diago- 

al nonlinear differential inclusion or a Lur’e differential inclusion 

 Boyd et al., 1994 ). The SNOF is also very similar to the LFT, with

he difference being that the operator � in the SNOF is a static 

onlinear operator. For the structure where � is replaced by a 

orm-bounded operator, the (7) becomes the standard form for the 

esign of robust linear controllers for discrete-time systems. Much 

f the same mathematical machinery applies to both model struc- 

ures. 

For D qp = 0 , the difference equations for the SNOF (7) are all

xplicit and solvable by first using (9) to compute q k from ˆ x k and 

 k , then computing p k from p k = �(q k ) , and then inserting p k into

8) and (10) to determine ˆ x k +1 and ˆ y k respectively. The procedure 

or simulating the difference equations is the same for D qp � = 0 , ex-

ept for one difference, which is that the first step is to insert ˆ x k 
nd u k into 

 k = C q ̂  x k + D qp �(q k ) + D qu u k (11) 

nd numerically solve for q k . There are several ways to solve this 

quation, including by zero-finding and fixed point iteration algo- 

ithms. One way is to numerically invert the equations off-line, i.e., 

efine the function f by 

f (q k ) := q k − D qp �(q k ) = C q ̂  x k + D qu u k , (12)

umerically solve for f −1 (·) off-line, and then apply on-line as 

 k = f −1 (C q ̂  x k + D qu u k ) . (13) 

his off-line approach is most useful when D qp is diagonal, as then 

he nonlinear operator on the left-hand side of (12) is diagonal, 

nd the nonlinear inversions in (13) can be solved as independent 

calar equations. For example, for the hyperbolic tangent activation 

unction, each element of f is defined by 

f i (q k,i ) := q k,i − D qp,ii tanh q k,i (14) 
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hich are scalar nonlinearities where the D qp,ii are scalars. The 

onlinear inverse f −1 is then the collection of scalar nonlinear in- 

erses into a vector, 

f −1 = [ f −1 
1 , · · · , f −1 

h 
] � . (15) 

n advantage of setting D qp to be zero during the training of a 

NOF is that the on-line computational cost is lower when the 

odel is used for real-time estimation and control. 

.3.1. Loop transformation 

The nonlinear stability analysis tools for SNOFs exploit the 

act that each nonlinearity γi lies within a sector. When the sec- 

or bounds assumed in a stability analysis condition does not 

atch with the sector bounds in the SNOF, a loop transformation 

 Desoer and Vidyasagar, 1975 ) can be used to produce an equiva- 

ent SNOF. 

.3.2. Lur’e system stability 

Consider a closed-loop system representable as a linear time- 

nvariant (LTI) system interconnected with a static nonlinearity 

: 

ˆ x k +1 = A ̂

 x k + Bp k (16) 

 k = C ̂  x k 

p k = �( q k ) (16) 

his system is said to be absolutely stable if its equilibrium point at 

he origin is globally uniformly asymptotically stable for all mem- 

ryless nonlinearities in a given sector ( Khalil and Grizzle, 2002; 

idyasagar, 2002 ). 

The first absolute stability result was published based on the di- 

ect Lyapunov method ( Lyapunov, 1892 ). A new form of Lyapunov 

unction for nonlinear system was suggested by Lur’e and V.N. 

ostnikov ( Lur’e and Postnikov, 1944 ), and numerous publications 

ave employed this method ( Liberzon, 2006 ). A different method 

o derive absolute stability conditions was proposed based on a 

requency-domain approach ( Popov, 1961 ). Thereafter, the general- 

zed Kalman–Popov–Yakubovich lemma for multivariable systems 

as established ( Gantmacher and Yakubovich, 1966; Popov, 1964 ). 

 popular quadratic criterion to study absolute stability was for- 

ulated ( Yakubovich, 1998 ). The Lur’e system is a well-known 

enchmark problem, in which the system (16) satisfies: 1) ( A , B ,

) is a minimal realization, and 2) the nonlinear operator �: R 

n q ×
 + → R 

n q is memoryless and sector-bounded, that is, lies within 

he sector-bound �
[ α, α] 

sb 
, i.e., [ α−1 

i 
γi (σ, k ) − σ ][ α−1 

i γi (σ, k ) − σ ] ≤
 , ∀ σ ∈ R , k ∈ Z + , i ∈ { 1 , . . . , n q } where n q is the number of non-

inearities. 

DANNs can be converted into a Lur’e system for which many 

ufficient conditions for global asymptotic stability conditions have 

een derived, e.g., see Kim et al. (2018) and citations therein. Much 

f the literature refers to the stability of the Lur’e system as abso- 

ute stability ( Khalil and Grizzle, 2002 ). The next section presents 

 necessary condition for the stability of a Lur’e system, which is 

lso a necessary stability condition when additional constraints are 

pplied to the nonlinearities γi , such as being odd, monotonic, and 

ocally slope restricted ( Kim et al., 2018 ). 

.3.3. SNOF representation of DANNs 

The SNOF representation of the DANNs can be used to test 

here every trajectory of the DANNs (NSSM, GIOM, or DRNN) con- 

erges to zero as k → ∞ . � is typically unit-sector-bounded with 

(0) = 0 , such as for the hyperbolic tangent and ReLU neurons, 

hereas the output of a sigmoid function does not vanish at the 

rigin and is not sector-bounded. When the sigmoid function is 

hosen as an activation function, the loop transformation can be 

sed to generate a SNOF with �(0) = 0 that is sector-bounded 

 Kim et al., 2018 ). 
4 
DANNs can be represented in SNOF, indicating that the SNOF 

s a superset of the DANNs. The relationships between the gen- 

ral values of the A , B , C in a SNOF to the particular values for the

ANNs, derived using block diagram algebra, are given below. 

• The NSSM can be written as ⎡ 

⎢ ⎣ 

x k +1 

q x,k 

q y,k 
y k 

⎤ 

⎥ ⎦ 

= 

⎡ 

⎢ ⎣ 

0 W AB 0 0 

V A 0 0 V B 

V C 0 0 V D 

0 0 W CD 0 

⎤ 

⎥ ⎦ 

⎡ 

⎢ ⎣ 

x k 
p x,k 

p y,k 
u k 

⎤ 

⎥ ⎦ 

. (17) 

The A matrix is the zero matrix of n × n dimensions, B p = 

[ W AB 0 n,h y ] , B u = 0 n,m 

, C q = [ V � 
A 

V � C ] � , C y = 0 l,n , and D qp = 0 h x + h y ,
D qu = [ V � B V 

� 
D ] 

� , D yp = [0 l,h x W CD ] , D yu = 0 l,m 

. 
• The GIOM can be represented as ˆ y k +1 = W A tanh (q k ) where 

q k = V A, 1 ̂  y k + · · · + V A,r ̂  y k −r+1 

+ V C u k + V B, 1 u k −1 + · · · + V B,q −1 u k −q +1 

= 

(
1 

z 
V A, 1 + 

1 

z 2 
V A, 2 + · · · + 

1 

z r 
V A,r 

)
W A p k 

+ 

(
V C + 

1 

z 
V B, 1 + · · · + 

1 

z q −1 
V B,q −1 

)
u k (18) 

where z −1 is the backward shift operator. For the general r = 

q − 1 case, the minimal realization can be written as 

� = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

1 
z 

I h 
1 
z 

I h 
. . . 

1 
z 

I h 
1 
z 

I h 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

rh ×rh 

, 

A = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

0 h I h 0 h · · · 0 h 

0 h 0 h I h 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 0 h 

0 h · · · 0 h 0 h I h 
0 h · · · · · · 0 h 0 h 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

rh ×rh 

, 

B p = 

⎡ 

⎢ ⎢ ⎣ 

V A, 1 W A 

V A, 2 W A 

. . . 
V A,r W A 

⎤ 

⎥ ⎥ ⎦ 

rh ×h 

, B u = 

⎡ 

⎢ ⎢ ⎣ 

V B, 1 

V B, 2 

. . . 
V B,q −1 

⎤ 

⎥ ⎥ ⎦ 

rh ×m 

, 

C q = [ I h 0 h · · · 0 h ] h ×rh , D qp = 0 h , D qu = V C , 

C y = 0 h ×rh , D yp = W A , D yu = 0 h,m 

. (19) 

In the case of r � = q − 1 , the r in (19) is substituted by r ′ =
max { r, q − 1 } , and some elements (e.g., V A,r or V B,q −1 ) are zero. 

• The DRNN can be written as ⎡ 

⎢ ⎣ 

x k +1 

q x,k 

q y,k 
y k 

⎤ 

⎥ ⎦ 

= 

⎡ 

⎢ ⎣ 

−αI W AB 0 0 

V A 0 0 V B 

V C 0 0 V D 

0 0 W CD 0 

⎤ 

⎥ ⎦ 

⎡ 

⎢ ⎣ 

x k 
p x,k 

p y,k 
u k 

⎤ 

⎥ ⎦ 

. (20) 

The A matrix is −αI n , and the other elements are same as for 

NSSM. 

The above SNOF representation of GIOM is improved over that 

iven in a previous study ( Kim et al., 2018 ) which was not a mini-

al realization. The A matrix in the previous study was (21) 

 = 

⎡ 

⎢ ⎣ 

0 l ,l r 0 l 0 l,m (q −1) 0 l,m 

I lr 0 lr,l 0 lr,m (q −1) 0 lr,m 

0 m,lr 0 m,l 0 m,m (q −1) 0 m 

0 m (q −1) ,lr 0 m (q −1) , 1 I m (q −1) 0 m (q −1) ,m 

⎤ 

⎥ ⎦ 

l(r+1)+ mq 

. 

(21) 
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The above expressions for DANNs imply that the SNOF can 

odel or parameterize any nonlinear dynamical system with an 

rbitrarily small approximation error, just as for DANNs ( Kim et al., 

018 ). 

.3.4. Controller form of the SNOF 

The SNOF in (8) –(10) has excess degrees of freedom. This 

ection shows how to employ a controller-form realization 

 Chen, 1998 ) to remove this excess, to simplify model identifica- 

ion. 

The approach is illustrated for an example SNOF that has one 

nput, one output, three states ( n = 3 ), one neuron ( h = 1 ), D qp = 0 ,

nd D yp = 0 1 : 

 = 

[ −a 1 −a 2 −a 3 
1 0 0 

0 1 0 

] 

, B p = 

[ 

1 

0 

0 

] 

, (22) 

 q = 

[
c q 1 c q 2 c q 3 

]
, B u = 

[ 

1 

0 

0 

] 

, (23) 

 y = 

[
c y 1 c y 2 c y 3 

]
, D qu = 0 , (24) 

 yu = 

[
d yu 1 

]
, D qp = 0 , D yp = 0 . (25) 

his representation has an equivalent mapping between each vari- 

ble, where the elements in the above equation can be derived 

rom an associated transfer function. Searching for the real scalars 

n the above equations is less computationally expensive than for 

he general SNOF, especially for systems of high state dimension. 

.4. Realization, controllability, observability conditions 

For convenience, this section summarizes some well- 

stablished control results used in this article. 

.4.1. Diagonalizable A matrix 

For an A matrix with n distinct eigenvalues, the transfer func- 

ion of a single-input single-output (SISO) system with n distinct 

oles can be represented as 

b 1 z 
n −1 + · · · + b n −1 z + b n 

(z + p 1 )(z + p 2 ) · · · (z + p n ) 
, (26) 

hich can be rewritten by partial fraction expansion as 

c 1 
z + p 1 

+ 

c 2 
z + p 2 

+ · · · + 

c n 

z + p n 
. (27) 

he realization of the transfer function into diagonal form can be 

epresented as 

 = 

⎡ 

⎣ 

−p 1 
. . . 

−p n 

⎤ 

⎦ , B = 

⎡ 

⎣ 

1 

. . . 
1 

⎤ 

⎦ , (28) 

nd 

 = [ c 1 · · · c n ] . (29) 

Consider an l × m transfer function matrix for a multi-input 

ulti-output (MIMO) system G (z) in which every entry of the ma- 

rix is a proper coprime fraction. Let 

 (z) = (z + p 1 )(z + p 2 ) · · · (z + p n −1 )(z + p n ) (30) 
1 The latter condition simplifies the algebra. 

r

A

5 
e the least common denominator of all entries of G (z) . Then G (z)

an be expressed as 

 (z) = 

1 
D (z) 

[ N(z)] 

= 

1 
D (z) 

[ N 1 z 
n −1 + N 2 z 

n −2 + · · · + N n −1 z + N n ] 
(31) 

here the N i are l × m constant matrices. The G (z) can be written 

s a partial fraction expansion, 

 (z) = 

1 

z + p 1 
ˆ N 1 + 

1 

z + p 2 
ˆ N 2 + · · · + 

1 

z + p n −1 

ˆ N n −1 + 

1 

z + p n 
ˆ N n , 

(32) 

here the ˆ N i and p i are computed from the N i and D (z) using 

tandard formulae ( Chen, 1998 ). 

Then a realization of G (z) can be written as 

 = I m 

�

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

−p 1 0 · · · 0 0 

0 −p 2 0 · · · 0 

0 0 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 0 

0 0 · · · 0 −p n 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, B = I m 

�

⎡ 

⎣ 

1 

. . . 
1 

⎤ 

⎦ , (33) 

nd 

 = 

[
ˆ N 1 

ˆ N 2 · · · ˆ N n −1 
ˆ N n 

]
, (34) 

here I m 

is the m × m unit matrix. The A matrix consists of n rows

nd n columns of m × m matrices, and the dimension of A matrix 

s nm × nm . The dimension of B matrix is nm × m . The C matrix

onsists of n number of ˆ N i , whose order is l × m , and the dimen-

ion of C matrix is l × nm . 

heorem 1. (Theorem 6.D1 in Chen, 1998 ) The n -dimensional linear 

ime-invariant state equation with (A, B, C) is controllable if and only 

f any of the following equivalent conditions are satisfied: 

(1) The n × nm controllability matrix 

 � [ B 

. . . AB 

. . . A 

2 B 

. . . · · ·
. . . A 

n −1 B ] (35) 

as rank n , where m is the number of inputs. 

(2) For every eigenvalue λi of A , the n × (n + m ) matrix [ λi I −

 

. 

. 

. B ] has rank n . 

heorem 2. (Theorem 6.DO1 in Chen, 1998 ) The n -dimensional linear 

ime-invariant state equation with (A, B, C) is observable if and only 

f any of the following equivalent conditions are satisfied: 

(1) The nl × n observability matrix 

 � 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

C 
CA 

CA 

2 

. . . 

CA 

n −1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

(36) 

as rank n , where l is the number of outputs. 

(2) For every eigenvalue λi of A , the (n + l) × n matrix 

[
λi I − A 

C 

]
as rank n . 

.4.2. Non-diagonalizable A matrix 

For every square matrix A , there is a similarity transformation 

uch that ˆ A has a Jordan normal form which features the eigenval- 

es with multiplicities collected in its diagonal elements and the 

uperdiagonal elements being either 0 or 1 (sometimes in the sub- 

iagonal elements instead of superdiagonal elements). 

The Jordan form 

ˆ A with n states and q distinct eigenvalues with 

(i ) geometric multiplicities can be written as 

ˆ 
 = diag ( ̂  A 1 , . . . , ˆ A q ) (37) 
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here ˆ A i consists of all Jordan blocks associated with eigenvalue 

p i , and 

ˆ 
 i = diag ( ̂  A i 1 , . . . , ˆ A ir(i ) ) . (38) 

he row of ˆ B corresponding to the last row of ˆ B i j is denoted by 

 li j , and the column of ˆ C corresponding to the first column of ˆ C i j 

s denoted by c 1 i j . 

For an A matrix with n = 5 and the number of distinct eigen-

alues q = 3 with multiplicities r(i ) = 2 , 2 , 1 , the rational transfer

unction of SISO system can be represented as 

 (z) = 

b 1 z 
4 + b 2 z 

3 + b 3 z 
2 + b 4 z + b 5 

( z + p 1 ) 2 ( z + p 2 ) 2 ( z + p 3 ) 
, (39) 

hich can be rewritten by partial fraction expansion as 

c 1 
(z + p 1 ) 2 

+ 

c 2 
z + p 1 

+ 

c 3 
(z + p 2 ) 2 

+ 

c 4 
z + p 2 

+ 

c 5 
z + p 3 

. (40) 

The realization of the transfer function into Jordan form can be 

epresented as 

 = 

⎡ 

⎢ ⎢ ⎣ 

−p 1 1 0 0 0 

0 −p 1 0 0 0 

0 0 −p 2 1 0 

0 0 0 −p 2 0 

0 0 0 0 −p 3 

⎤ 

⎥ ⎥ ⎦ 

, B = 

⎡ 

⎢ ⎢ ⎣ 

0 

1 

0 

1 

1 

⎤ 

⎥ ⎥ ⎦ 

, (41) 

nd 

 = 

[
c 1 c 2 c 3 c 4 c 5 

]
. 2 (42) 

Consider the 2 × 2 transfer matrix of multi-input multi-output 

MIMO) system G (z) in which every entry of the matrix is a proper

oprime fraction. Let 

 (z) = (z + p 1 ) 
2 (z + p 2 ) 

2 (z + p 3 ) (43) 

e the least common denominator of all entries of G (z) . Then G (z)

an be expressed as 

 (z) = 

[
g 1 (z) g 2 (z) 
g 3 (z) g 4 (z) 

]
(44) 

here g i = 

c i 1 
(z+ p 1 ) 2 

+ 

c i 2 
z+ p 1 + 

c i 3 
(z+ p 2 ) 2 

+ 

c i 4 
z+ p 2 + 

c i 5 
z+ p 3 . 

To derive the A , B , and C matrices that constitute M in the SNOF, 

onstruct a minimal realization of G (z) , via the Jordan canonical 

orm which is 

 = I �

⎡ 

⎢ ⎢ ⎣ 

−p 1 1 0 0 0 

0 −p 1 0 0 0 

0 0 −p 2 1 0 

0 0 0 −p 2 0 

0 0 0 0 −p 3 

⎤ 

⎥ ⎥ ⎦ 

, B = I �

⎡ 

⎢ ⎢ ⎣ 

0 

1 

0 

1 

1 

⎤ 

⎥ ⎥ ⎦ 

, (45) 

nd 

 = 

[
c 11 c 12 c 13 c 14 c 15 c 21 c 22 c 23 c 24 c 25 

c 31 c 32 c 33 c 34 c 35 c 41 c 42 c 43 c 44 c 45 

]
. 

(46) 

Theorem 3 (Theorem 6.8 in Chen, 1998 ) The n -dimensional lin- 

ar time-invariant Jordan-form dynamical system is controllable if 
2 The A matrix in (50) has five degrees of freedom. In (50), the degrees of free- 

om with respect to the values of the eigenvalues is three, and there are two de- 

rees of freedom with respect to the superdiagonal elements since each 1 on the 

uperdiagonal could alternatively be 0. As such, the A matrix for the SNOF has de- 

rees of freedom equal to the number of states in the model irrespective of the 

umber of distinct eigenvalues. 

t

s

c

t

m  

r

d

6 
nd only if, for each i = 1 , 2 , . . . , q , the rows of the r(i ) × n matrix 

 

l 
i � 

⎡ 

⎢ ⎢ ⎣ 

b li 1 
b li 2 

. . . 
b lir(i ) 

⎤ 

⎥ ⎥ ⎦ 

(47) 

re linearly independent. In addition, the system is observable if 

nd only if, for each i = 1 , 2 , . . . , q , the columns of the n × r(i ) ma-

rix 

 

1 
i � [ c 1 i 1 c 1 i 2 · · · c 1 ir(i ) ] (48) 

re linearly independent (over the field of complex numbers). 

. Matrix structure and eigenvalue analysis 

In an analysis of a neural network structure, it is important to 

nvestigate how many parameters are optimized during the train- 

ng procedure. In this context, the number of degrees of freedom 

f a neural network structure is defined as the maximum number 

f parameters (weights and biases) that should be fixed to have 

 completely distinguishable (distinct) neural network structure. 

hen a connection between neurons in different hidden layers is 

epresented as A , B , and C matrices, the size of matrices can be 

ny size. Given that the uniqueness of the A , B , and C matrices is

onserved for the permutation ( Albertini et al., 1993 ), the matrices 

ith the minimal condition (with both observability and controlla- 

ility) are considered in this study. The number of independent el- 

ments in the minimal connection matrices is counted as the num- 

er of degrees of freedom of a neural network structure. When a 

eural network model has a larger number of degrees of freedom 

han the other model, then the former model can be represented 

s a superset of the latter model. 

The first insights into limitations of the three DANN model 

tructures is obtained by inspection of their A , B , and C matrices 

hen written as a SNOF (see Section 2.3.3 ). In a SNOF, the A , B ,

nd C matrices have no restrictions on their structure, as long as 

heir elements are real. The situation is very different for the three 

ANNs; while the B and C matrices are allowed to have any struc- 

ure, the DANNs have very restrictive structures for their A matrix. 

he A matrices are 0, 

[
0 0 

I 0 

]
, and −αI for the NSSM, GIOM, and 

RNN model structures ( Section 2.3.3 ). The eigenvalues of the first 

wo DANNS are equal to zero, and for the latter DANN are all equal 

o −α. These A matrices are highly restrictive compared to a SNOF, 

hich can have any values for the eigenvalues including complex , 

nd can have nondiagonal Jordan form. The very restrictive struc- 

ure of the A matrices of the DANNs strongly suggests that much 

igher dimensionality would be needed in the DANNs to be able 

o fit the input-output behavior of nearly all nonlinear dynamical 

ystems. This observation is consistent with the results of the case 

tudy reported by Kim et al. (2011) , in which the SNOF captured 

he input-output behavior much more accurately than the DANNs 

hen all of the model structures were restricted to have the same 

umber of states and neurons. 

The number of degrees of freedom in the A matrix is zero for 

he NSSM and GIOM and is one for the DRNN. The restriction of 

he A matrices and their eigenvalues for the DANNs are not re- 

oved by increasing the number of states. In contrast, the A ma- 

rix for the SNOF has degrees of freedom equal to the number of 

tates in the model (i.e., its row or column dimension). This result 

an be proved by applying a nonsingular transformation matrix T 

o convert A to its Jordan form. To produce the same input-output 

apping, the matrices B and C must be replaced by T B and CT −1 ,

espectively, which do not change the number of degrees of free- 

om. The maximum number of degrees of freedom for a Jordan 
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orm is equal to the row/column dimension of the matrix A (any 

uperdiagonal 1 adds a binary degree of freedom but is associated 

ith a reduction in the number of distinct eigenvalues which re- 

oves a real degree of freedom). 

. Degree-of-Freedom analysis 

This section derives the number of degrees of freedom for the 

NOF and DANNs, using simple examples to illustrate the main 

dea of the proofs while saving space. To represent the character- 

stic of applications in having the same poles appear in multiple 

lements, the examples are parameterized in terms of s , which is 

he number of distinct poles that can appear in the elements of 

he transfer function G (z) = C(zI − A ) −1 B where the matrices are

efined in (7) . 

The state equation of the general SNOF (8) can be written as 

 ̂

 x k = A ̂

 x k + B p p k + B u u k (49) 

ˆ 
 k = (zI − A ) −1 [ B p p k + B u u k ] . (50) 

nsertion of (50) into (9) and (10) results in 

 k = C q (zI − A ) −1 [ B p p k + B u u k ] + D qp p k + D qu u k (51) 

= [ C q (zI − A ) −1 B p + D qp ] p k + [ C q (zI − A ) −1 B u + D qu ] u k (52) 

= G qp p k + G qu u k (53) 

ˆ 
 k = C y (zI − A ) −1 [ B p p k + B u u k ] + D yp p k + D yu u k (54) 

= [ C y (zI − A ) −1 B p + D yp ] p k + [ C y (zI − A ) −1 B u + D yu ] u k (55) 

= G yp p k + G yu u k . (56) 

hen, the total transfer matrix can be represented with G = 

G qp G qu 

G yp G yu 

]
where 

 qp = C q (zI − A ) −1 B p + D qp 

 qu = C q (zI − A ) −1 B u + D qu 

 yp = C y (zI − A ) −1 B p + D yp 

 yu = C y (zI − A ) −1 B u + D yu . (57) 

The number of degrees of freedom is first analyzed for a SNOF 

n which each element can have up to s = 2 distinct poles and h =
 neurons to establish a pattern that is used to give the expression 

n the general case. 

.1. SNOF With distinct eigenvalues 

For s = 2 , h = 3 , consider one element of the general trans-

er function matrix G qp can be rewritten as G qp (z) = 

1 
D (z) 

N qp (z) 

here 

 (z) = (z + p 1 )(z + p 2 ) , (58) 

 qp (z) = 

[ 

a 1 (z + b 1 ) a 2 (z + b 2 ) a 3 (z + b 3 ) 
a 4 (z + b 4 ) a 5 (z + b 5 ) a 6 (z + b 6 ) 
a 7 (z + b 7 ) a 8 (z + b 8 ) a 9 (z + b 9 ) 

] 

, (59) 
7 
hich by partial fraction expansion can be written as 

 qp (z) = 

⎡ 

⎣ 

c 1 
z+ p 1 + 

d 1 
z+ p 2 

c 2 
z+ p 1 + 

d 2 
z+ p 2 

c 3 
z+ p 1 + 

d 3 
z+ p 2 

c 4 
z+ p 1 + 

d 4 
z+ p 2 

c 5 
z+ p 1 + 

d 5 
z+ p 2 

c 6 
z+ p 1 + 

d 6 
z+ p 2 

c 7 
z+ p 1 + 

d 7 
z+ p 2 

c 8 
z+ p 1 + 

d 8 
z+ p 2 

c 9 
z+ p 1 + 

d 9 
z+ p 2 

⎤ 

⎦ . (60) 

oth of the above transfer matrices have sh 2 + s degrees of free- 

om since the p i , a j , and b k cannot be changed in any way with-

ut changing the input-output relationship for G qp (z) . In the case 

f the other elements ( G qp , G qu , and G yp ), the matrices have same

oles ( p 1 and p 2 ), but have independent elements in N qu ∈ R 

h ×m ,

 yp ∈ R 

l×h , and N yu ∈ R 

l×m . Therefore, the total number of de-

rees of freedom in the final transfer matrix G = 

[
G qp G qu 

G yp G yu 

]
is 

 (h 2 + hm + hl + lm + 1) 

To characterize the set of A , B , C matrices in the SNOF that cor-

esponds to G (z) , write the realization of the transfer function ma- 

rix (60) as a diagonal state-space model, 

ˆ 
 = T −1 AT = 

[
−p 1 I 0 

0 −p 2 I 

]
, ˆ B = T −1 B = 

[
I 
I 

]
, (61) 

nd 

ˆ 
 = CT = 

[ 

c 1 c 2 c 3 d 1 d 2 d 3 
c 4 c 5 c 6 d 4 d 5 d 6 
c 7 c 8 c 9 d 7 d 8 d 9 

] 

, (62) 

here each identity matrix I ∈ R 

3 ×3 , each zero matrix 0 ∈ R 

3 ×3 ,

nd T ∈ R 

3 ×3 is any invertible matrix that diagonalizes A . 

This state-space model has the same sh 2 + s degrees of free- 

om. The minimality of this realization of (A, B, C) can be con- 

rmed by analyzing the controllability and observability of the sys- 

em. Controllability is shown by noting that 

 = [ ̂  B 

ˆ A ̂

 B ] = 

[
I −p 1 I 
I −p 2 I 

]
(63) 

as full rank for p 1 � = p 2 . 

Observability holds if 

[
λi I − ˆ A 

ˆ C 

]
has the same rank for all of its 

igenvalues λi . Since 

i I − ˆ A = diag (λi + p 1 , λi + p 1 , λi + p 1 , 

λi + p 2 , λi + p 2 , λi + p 2 ) , (64) 

he matrix λi I − ˆ A has a rank of three since λi is equal to −p 1 or

p 2 , and the matrix ˆ C can always choose its first three columns 

nd its second three columns to be full rank by minor perturba- 

ions of c i and d j . In other words, ˆ C can always be perturbed by an

rbitrarily small amount so that the state-space model is observ- 

ble, while fitting G (z) arbitrarily closely. 

.2. SNOF For repeated poles 

Consider a system with q < s distinct poles p i ( 1 ≤ i ≤ q ) of al-

ebraic multiplicity m i , then the jth entry of the transfer function 

atrix associated with the SNOF can be represented as 

 j (z) = 

b j1 z 
s −1 + · · · + b js −1 z + b js 

(z + p 1 ) m 1 . . . (z + p q ) m q 
, (65) 

hich can be divided into q subsystems 

 j (z) = g j1 (z) + · · · + g jq (z) , (66) 

ach of which can be written by partial fraction expansion as 

 ji (z) = 

c j, 1 i 

z + p 
+ · · · + 

c j,m i i 

(z + p ) m i 
. (67) 
i i 
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Table 1 

The number of degrees of freedom in the DANNs and SNOF. 

Model Structure # of degrees of freedom 

SNOF (distinct) s (h 2 + hm + hl + lm + 1) 

SNOF (general) s (h 2 + sm + hl + lm ) + q 

NSSM h 2 + 2 hm + hl

GIOM s (h 2 + hm ) + hl

DRNN sh 2 + 2 hm + hl + 1 

w

A

a

C

T

i

m

f  

F

G

G

d

s

4

(  

r

G

T

b

A

T

t  

t  

F

t  

D  

i  

t  

W

4

t

h

t

i

g

et the number of Jordan blocks associated with pole p i be r i (its 

eometric multiplicity); then r i ≤ h for all i to have controllability 

nd observability. 

For up to s = 5 states per element and h = 2 neurons, consider

he system with the transfer function matrix, 

 qp (z) = 

1 

D (z) 
N(z) = 

1 

D (z) 

[
n 1 (z) n 2 (z) 
n 3 (z) n 4 (z) 

]
, (68) 

here D (z) = (z + p 1 ) 
2 (z + p 2 ) 

2 (z + p 3 ) and 

 j (z) = b j1 z 
4 + b j2 z 

3 + b j3 z 
2 + b j4 z + b j5 (69) 

or j = 1 , . . . , 4 . The number of real degrees of freedom for this ex-

mple is 2 2 5 + 3 , which are the values of the b ji and p i . 

Extrapolating the expressions to general s , h , and q , the number

f real degrees of freedom for G qp is sh 2 + q . Effectively the exam-

le has two integer degrees of freedom, which is the number of 

oles that are repeated, so the total number of degrees of freedom 

or G qp is sh 2 + s . 

The realization of (68) can be represented as (45) and (46) , and 

he construction also has sh 2 + q real degrees of freedom. In the 

ase of the other elements ( G qp , G qu , and G yp ), the matrices have

ame poles ( p 1 , p 2 , and p 3 ), but have independent elements in N qu ,

 yp , and N yu (similar to distinct pole case). Then, final G matrix has

 (h 2 + hm + hl + lm ) + q degrees of freedom. 

To show controllability of the Jordan form, the last rows of k i 1 
nd k i 2 are linearly independent, respectively, for all distinct poles 

p i (Theorem 3). For p 1 , the last row of k 11 is [1 0] and of k 12 is

0 1] , which are linearly independent. This also holds for p 2 . For

p 3 , the last row of k 31 is [0 1] , which implies that the system is

ontrollable. 

The analysis is similar for showing observability. 

.3. Degrees of freedom for the three DANNs 

.3.1. NSSM 

The NSSM is the subset of SNOF in which all eigenvalue are 

ero ( p 1 = · · · = p s = 0 ). For example, for an NSSM with up to s = 1

tate per element and h = 2 neurons, the transfer function matrix 

s 

 qp (z) = 

[
c 1 
z 

c 2 
z 

c 3 
z 

c 4 
z 

]
. (70) 

he realization of transfer function matrix into diagonal form 

ives 

 = 

[
0 0 

0 0 

]
, B p = 

[
1 0 

0 1 

]
, C q = 

[
c 1 c 2 
c 3 c 4 

]
. (71) 

he controllability matrix is full rank and the observability matrix 

s full rank provided that the matrix C q is full rank. The set of ma-

rices that is full rank is dense in the space of 2 × 2 real matrices. 

Both the transfer function matrix and A , B p , C q matrices have 

nly h 2 = 4 degrees of freedom. In general the number of degrees 

f freedom for G qp is sh 2 . For NSSM, from B u = 0 , C y = 0 , D qp =
 , and D yu = 0 , (57) is reduced into G qu = D qu = [ V � B V � D ] 

� , G yp =
 yp = [0 W CD ] , G yu = 0 . Therefore, the transfer matrix G has h 2 +
 hm + hl ( V B , V D ∈ R 

h ×m and W CD ∈ R 

l×h ) . 

.3.2. GIOM 

The GIOM can be represented as a subset of the general case. 

or a GIOM with up to s = 2(r = q − 1 = 2) states per element, h =
 neurons, and m = 3 , the transfer function matrix G qp (z) of GIOM

an be written as 

 qp (z) = 

⎡ 

⎢ ⎣ 

a 1 
z 2 

+ 

b 1 
z 

a 2 
z 2 

+ 

b 2 
z 

a 3 
z 2 

+ 

b 3 
z 

a 4 
z 2 

+ 

b 4 
z 

a 5 
z 2 

+ 

b 5 
z 

a 6 
z 2 

+ 

b 6 
z 

a 7 
z 2 

+ 

b 7 
z 

a 8 
z 2 

+ 

b 8 
z 

a 9 
z 2 

+ 

b 9 
z 

⎤ 

⎥ ⎦ 

, (72) 
8 
ith state-space matrices given by 

 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

0 1 0 0 0 0 

0 0 0 0 0 0 

0 0 0 1 0 0 

0 0 0 0 0 0 

0 0 0 0 0 1 

0 0 0 0 0 0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, B p = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

0 0 0 

1 0 0 

0 0 0 

0 1 0 

0 0 0 

0 0 1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, (73) 

nd 

 q = 

[ 

a 1 b 1 a 2 b 2 a 3 b 3 
a 4 b 4 a 5 b 5 a 6 b 6 
a 7 b 7 a 8 b 8 a 9 b 9 

] 

. (74) 

he nonsingularity of the controllability matrix implies that (A, B p ) 

s controllable, and the observability matrix is nonsingular for al- 

ost all choices of degrees of freedom. 

In both of the above representations, the number of degrees of 

reedom for G qp is 3 2 2 = 18 for the example and sh 2 in general.

rom (57) , 

 qu (z) = 

⎡ 

⎢ ⎣ 

a ′ 1 
z 2 

+ 

b ′ 1 
z 

+ c ′ 1 
a ′ 2 
z 2 

+ 

b ′ 2 
z 

+ c ′ 2 
a ′ 3 
z 2 

+ 

b ′ 3 
z 

+ c ′ 3 
a ′ 4 
z 2 

+ 

b ′ 4 
z 

+ c ′ 4 
a ′ 5 
z 2 

+ 

b ′ 5 
z 

+ c ′ 5 
a ′ 6 
z 2 

+ 

b ′ 6 
z 

+ c ′ 6 
a ′ 7 
z 2 

+ 

b ′ 7 
z 

+ c ′ 7 
a ′ 8 
z 2 

+ 

b ′ 8 
z 

+ c ′ 8 
a ′ 9 
z 2 

+ 

b ′ 9 
z 

+ c ′ 9 

⎤ 

⎥ ⎦ 

, (75) 

 yp = D yp = W A , and G yu = 0 . Thus, G qu and G yp have shm and hl

egrees of freedom, respectively, and the final G matrix have sh 2 + 

hm + hl degrees of freedom. 

.3.3. DRNN 

DRNN is the subset of SNOF in which all eigenvalue are same 

 p 1 = · · · = p s ). For up to s = 1 state per element and h = 2 neu-

ons, the corresponding transfer function matrix is 

 qp (z) = 

[ c 1 
z+ p 1 

c 2 
z+ p 1 

c 3 
z+ p 1 

c 4 
z+ p 1 

]
. (76) 

he realization of transfer function matrix into diagonal form can 

e written as follows: 

 = 

[
−p 1 0 

0 −p 1 

]
, B p = 

[
1 0 

0 1 

]
, C q = 

[
c 1 c 2 
c 3 c 4 

]
. (77) 

he system is controllable, and is observable for any full-rank ma- 

rix C q . The number of degrees of freedom of A is 1 from p 1 , and

he total number of degree of freedom of (A, B p , C q ) is 1 + 2 2 = 5 .

or a DRNN with up to s states per element and h neurons, the 

otal number of degrees of freedom of (A, B p , C q ) is sh 2 + 1 . For

RNN, from B u = 0 , C y = 0 , D qp = 0 , and D yu = 0 , (57) is reduced

nto G qu = D qu = [ V � 
B 

V � 
D 

] � , G yp = D yp = [0 W CD ] , G yu = 0 . Therefore,

he transfer matrix G has sh 2 + 2 hm + hl + 1 ( V B , V D ∈ R 

h ×m and

 CD ∈ R 

l×h ) . 

.3.4. Summary 

Table 1 summarizes the number of degrees of freedom for all of 

he model structures. For any fixed number of neurons, the SNOF 

as a larger number of degrees of freedom that can be optimized 

o fit input-output data of the nonlinear dynamical system dur- 

ng model identification. The additional degrees of freedom sug- 

est that, for systems with the relatively low number of neurons 
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Fig. 1. NSSM, GIOM, SNOF predictions for the biomass concentration (g/L) for five test operating conditions. The number in parenthesis in the legend is the number of 

hidden neurons. The figures in the first row denote test sets 1–3, and in the second row denote test sets 4 and 5. 

Fig. 2. NSSM, GIOM, and SNOF predictions for the glycerol concentration (g/L) for five test operating conditions. The number in parenthesis in the legend implies the number 

of hidden neurons. The figures in the first row denote test sets 1–3, and those in the second row denote test sets 4 and 5. 
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eeded to have nonconservative analysis, an accurate SNOF model 

as the potential to have fewer neurons than the three popular 

ANNs. For example, a SNOF with s = 5 and one neuron h = 1

ould have more degrees of freedom ( sh 2 + s = 10 ) than an NSSM

r GIOM with one state and three neurons ( sh 2 = 9 ). These results

otivate the further exploration of methods for the optimal train- 

ng of SNOFs and their application to specific processes, to demon- 

trate the expected reduction in conservatism when applying rig- 

rous analysis and synthesis methods compared to DANNs. 

. Case study 

This section compare the performance and compactness of the 

ANNs and SNOF for a system with highly nonlinear dynamics. 

.1. Multistage bioreactor model 

Most biochemical processes have nonlinear kinetics. Pichia pas- 

oris is used to manufacture many proteins, due in part to its fast 
9 
rowth and in part to its easy regulation ( Ren et al., 2003 ). A

echanistic model describing the growth and energy metabolism 

f Pichia pastoris cells producing protein in a bioreactor with var- 

ous operation modes serves as the “true process” for comparing 

he size of DANNs and SNOF needed to model the input-output be- 

avior of the process. The process consists of two stages. At first, 

he cells are fed glycerol to grow biomass in fed-batch mode with 

 step glycerol feed. The second stage is methanol growth in fed- 

atch mode with two methanol feed steps, in which feed rates are 

ncreasing in the second step. In this study, a macroscopic biore- 

ctor model for the process is used to produce datasets, which 

re used in identification (i.e., training) and testing the DANNs and 

NOF models. The differential equations for the mass balances for 

he system are 

dX = 

F in (X in − X ) + (μg + μm 

) X (78) 



P.R. Jeon, M.S. Hong and R.D. Braatz Computers and Chemical Engineering 159 (2022) 107674 

Fig. 3. NSSM, GIOM, and SNOF predictions for the methanol concentration (g/L) for five test operating conditions. The number in parenthesis in the legend implies the 

number of hidden neurons. The figures in the first row denote test sets 1–3, and those in the second row denote test sets 4 and 5. 

Fig. 4. NSSM, GIOM, and SNOF predictions for the product concentration (g/L) for five test operating conditions. The number in parenthesis in the legend implies the number 

of hidden neurons. The figures in the first row denote test set 1–3, and those in the second row denote test sets 4 and 5. 
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dS g 

dt 
= 

F in 
V 

(S in,g − S g ) − q s,g X (79) 

dS m 

dt 
= 

F in 
V 

(S in,m 

− S m 

) − q s,m 

X (80) 

dP 

dt 
= −F in 

V 

P + q P X (81) 

here X is the concentration of biomass from dry weight (g/L), F 

s the glycerol or methanol feed rate (mL/h) in which subscripts 

n and out denote inlet and outlet respectively, V is the medium 

olume (L), μg is the specific growth rate (1/h), S in is the inlet 

ubstrate concentration (g/L), S is the limiting substrate concentra- 

ion, q s is the specific rate of substrate consumption (g/g-h), P is 

he concentration of product (g/L), q P is the specific rate of prod- 

ct generation (g/g-h), and subscripts g and m denote glycerol and 

ethanol, respectively. 
10 
The specific rate of substrate consumption q s,i (g substrate/g 

iomass-h) in the substrate limitation regime was assumed to fol- 

ow Monod kinetics ( Monod, 1949 ), 

 s,i = q max 
s,i 

S i 
S i + K S,i 

, (82) 

here q max 
s,i 

is the specific maximum rate of substrate consumption 

g substrate/g biomass-h) and K S,i is the saturation constant (g/L). 

The specific growth rate at the limiting substrate μi (1/h) was 

alculated from the difference between the specific rate of sub- 

trate consumption and maintenance multiplied by the yield co- 

fficient, 

i = (q s,i − q m,i ) Y em,i , (83) 

here q m,i is the maintenance coefficient (g/g-h) and Y em,i is the 

iomass yield coefficient exclusive maintenance (g/g). The specific 

roduction rate q P (g/g-h) was assumed to follow a specific en- 

yme model ( Hong et al., 2021 ). The responsible enzyme for pro- 

ein secretion is assumed to be only active when the enzyme E is 
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Fig. 5. NSSM, GIOM, and SNOF predictions for the medium volume (L) for five test operating conditions. The number in parenthesis in the legend implies the number of 

hidden neurons. The figures in the first row denote test sets 1–3, and those in the second row denote test sets 4 and 5. 

Table 2 

The parameters used in the simulation. 

Symbol Unit Glycerol Methanol 

K S,i g/L 0.1 0.1 

q m,i g/g-h 0 0.013 

q max 
s,i 

g/g-h 0.37 0.57 

S in,i g/L 250–750 780–1170 

Y em,i g/g 0.7 0.36 

F in,i mL/h 1 0.7–1.5 

pK a,E 3.42 

αP mg/g 23.2 69.0 

Table 3 

The operational modes. 

Operation Mode 1 2 3 

Feed inlet (mL/h) F in,g F 1 
in,m 

F 2 
in,m 

Feed inlet 

Concentration (g/L) 

Glycerol S in,g 0 0 

Methanol 0 S in,m S in,m 

Operation Time (h) 5 5 5 

d

c

t
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w

p
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m
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m

Table 4 

The operating conditions for the training and test datasets ( F in,g = 1 mL/h). 

Data set No. S in,g (g/L) F in,m (mL/h) S in,m (g/L) 

F 1 
in,m 

F 2 
in,m 

Training 1 250 1.1848 1.2867 780.0 

2 250 0.8112 0.9501 877.5 

3 250 0.8025 1.4978 975.0 

4 250 1.2297 1.3274 1170.0 

5 375 0.7469 0.7775 780.0 

6 375 0.7693 1.1490 975.0 

7 375 1.1932 1.4711 1072.5 

8 375 0.9969 1.1594 1170.0 

9 500 0.8615 1.0617 780.0 

10 500 0.8561 1.1554 877.5 

11 500 1.0811 1.1670 975.0 

12 500 1.1143 1.3585 1072.5 

13 500 0.7552 1.2858 1170.0 

14 625 0.8636 1.3624 877.5 

15 625 0.9409 1.3974 1072.5 

16 625 1.1717 1.4854 1170.0 

17 750 1.0454 1.1071 877.5 

18 750 1.2672 1.4328 975.0 

19 750 1.1711 1.4125 1072.5 

20 750 0.9738 1.2095 1170.0 

Test 1 250 0.8432 1.3023 1072.5 

2 375 1.1932 1.4699 877.5 

3 625 1.2148 1.2377 780.0 

4 625 1.1940 1.1942 975.0 

5 750 0.8011 1.0538 780.0 
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r

m

eprotonated: EH 

+ 
K a,E 

� E + H 

+ , where K a,E is the acid dissociation 

onstant for the enzyme. Then the specific total production rate of 

he active enzyme is 

 P,i = 

αP,i μi 

10 

pK a,E −pH + 1 

(84) 

here αP,i is the growth-associated proportional coefficient. The 

arameters of the model are obtained in the literature ( Hong et al., 

021 ) and shown in Table 2 . The pH of system was fixed to 6.5,

nd the precipitation reaction in the medium and the intracellu- 

ar changes in carbon and nitrogen concentrations in protein were 

ssumed to be negligible. 

This particular bioreactor operation was selected because of its 

ncreased nonlinear dynamics associated with the discrete jump in 

ts model parameters when transitioning between a glycerol and 

ethanol feed. 

.2. Global optimization with multistart 

For the identification procedure (i.e., network training), multi- 

le algorithms are available for finding the weights and biases to 

inimize the error function, which is typically the sum-of-squared 
11 
ifferences between the model predictions and data. Gradient- 

ased algorithms can converge quickly, but usually only to local 

inima. So-called “global optimization algorithms” such as evolu- 

ionary algorithms have been applied to network training, which 

an converge to single or multiple global minima ( Volgis and La- 

aris, 2006 ). Such global minima may have the same fit to data 

or the data used for model evaluation, but may produce different 

redictions or interpolations when fed different inputs. 

The multistart method, which runs optimization algorithms 

or many random choices for initial guesses, is widely applied 

n parameter estimation. When a large enough number of well- 

istributed starting points are used, the method can find the 

asin of attraction which includes the global optima ( Peri and 

inti, 2012 ). In this study, the training of DANNs and SNOF was 

epeated until eight initial guesses converged to the same mini- 

um error, with thousands of starting points made randomly in 
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Table 5 

Comparison of performances of SNOF and DANNs. 

Averaged Relative Error (%) 

h n SNOF NSSM h q r GIOM 

Biomass concentration (g/L) 1 1 1.01 2.00 1 2 1 2.10 

Glycerol concentration (g/L) 1 1 2.83 15.12 1 2 1 15.36 

2 2 5.58 2 2 1 1.50 

Methanol concentration (g/L) 1 1 7.14 24.79 1 2 1 7.61 

2 2 2.00 12.44 2 2 1 4.31 

3 3 2.10 

Product concentration (g/L) 1 1 1.85 10.5 1 2 1 6.24 

2 2 1.78 2 2 1 1.79 

Medium volume (L) 1 1 1.00 1.30 1 2 1 1.04 
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he range of [ −1 , 1] to learn the best weights to predict the test

et well. 

.3. Model identification 

.3.1. Simulation details 

Datasets were produced by running twenty-five simulations for 

 total process time of 15 h, with a sampling period of 3 minutes 

or on-line measurements of four input variables ( F in,g , F in,m 

, S in,g ,

nd S in,m 

) and five output variables ( X , S g , S m 

, P , and V ), respec-

ively. The detailed operational modes of the multistage bioreactor 

re listed in Table 3 . 

The initial states of bioreactors are fixed to the same for all 

imulations: X 0 = 45 g/L, S g0 = S m 0 = P 0 = 0 g/L, and V 0 = 0 . 15 L.

he simulations provide a wide variation in the datasets by varying 

eed rates and concentrations. 

For the first stage (semi-batch glycerol feed), the initial feed 

ate of glycerol ( F in,g ) was fixed to 1 mL/h while the initial concen-

ration of the glycerol in feed ( S in,g ) ranged from 250 to 750 g/L.

or the second stage (semi-batch on methanol feed), the first and 

econd feed rate of methanol ( F 1 
in,m 

and F 2 
in,m 

) ranged from 0.7 to

.5 mL/h while the initial concentration of the methanol in feed 

 S in,m 

) ranged from 780 to 1170 g/L. All bioreactors were simu- 

ated with additive white Gaussian noise ( σ = 0 . 1 ) in the inputs

nd outputs. 

.3.2. Training procedure 

After the simulations, twenty datasets were randomly allocated 

o the training set while the remaining datasets were allocated to 

est set. The detailed conditions of resulted training and test set at 

ach operational mode are given in Table 4 . 

The minimum and maximum values of input variables and out- 

ut variable in the training set were used to normalize all data 

nto the range of [0 , 1] . In order to find out the required num-

er of neurons to capture the dynamics of each output, the DANNs 

nd SNOF were trained in the form of four inputs and one output, 

espectively. The training was conducted with back-propagation 

hrough time that minimizes the Mean Squared Error (MSE) be- 

ween target and corresponding one-step-head prediction of the 

raining set. The DAANs and SNOF were trained with the mul- 

iple initial guesses, and the prediction accuracy of the trained 

ANNs and SNOF was quantified in terms of MSE when applying 

he model to the test set. The performance of DANNs and SNOF 

as estimated after the re-scaling of the prediction into the origi- 

al range. In order to compare the relative performance on output 

ariables, the averaged relative error for j output ( ARE j ) was cal- 

ulated by 

RE j (%) = 

1 

5 

5 ∑ 

i =1 

√ 

MSE i j 

t̄ i j 

× 100 (85) 

here MSE i j is the mean squared error of jth output i th test set, 

nd t̄ i j is the mean value of jth target in i th test set. 
12 
.3.3. Structure of the ANNs and SNOF 

In this study, the structure of the DANNs and SNOF consisted 

f one input layer, one hidden layer, and one output layer. The ac- 

ivation function in the hidden layer was chosen as a hyperbolic 

angent, and that in the output layer was a linear function. The 

ias terms in the DANNs and SNOF were all removed. For the one 

idden neuron case of the NSSM, (17) was simplified to 
 

x k +1 

q x,k 

y k 

] 

= 

[ 

0 W AB 0 

V A 0 V B 

W CD 0 0 

] [ 

x k 
p x,k 

u k 

] 

. (86) 

n the case of the SNOF, D qp and D yp were set to zero to simplify

he model identification algorithm. 

.3.4. Performance comparison 

The general SNOF, NSSM, and GIOM are compared for 4-input 

-output modelling in terms of the ARE in Table 5 and transient 

esponses in Figures 1–5 for the test datasets. The SNOF has the 

est performance for every output when the models have the same 

umber of hidden neurons, in some cases by nearly an order of 

agnitude lower ARE. For the NSSM, 3 hidden neurons were re- 

uired to fit the methanol concentration, and 2 hidden neurons 

or the glycerol and product concentrations. GIOM also needed 2 

idden neurons to fit the glycerol, methanol, and product concen- 

rations. The SNOF is observed to be the most compact model. A 

NOF with a single neuron has low prediction error for the pre- 

iction of all of the variables except for methanol concentration, in 

hich two neurons was needed. The one-neuron DANNs had large 

rrors for all of the concentrations, in several cases by about a fac- 

or of five. 

. Conclusions 

Dynamic artificial neural networks are widely reported in in- 

ustrial applications without having any theoretical guarantees of 

tability or performance. Academic studies have derived sufficient 

onditions to provide theoretical conditions for proving stability, 

ut the results tend to be conservative for large numbers of neu- 

ons. 

This article analyzes the matrix structures and degrees of free- 

om to assess the relative ability of the standard normal operator 

orm and three popular dynamic artificial neural network models 

o fit the input-output behavior of nonlinear dynamical systems. A 

eries of examples were used to illustrate the construction of the 

eal matrix that specifies a SNOF, and to show that the matrix con- 

tructions for the DANNs have fewer degrees of freedom than the 

NOF. For a multistage bioreactor, the SNOF is observed to be have 

uch lower average relative error than the DANNs, when the mod- 

ls have the same number of neurons. Typically the SNOF resulted 

n accurate predictions even when having only a single neuron. 

he results imply that SNOF is a promising neural network model 

tructure for the identification and control of nonlinear dynamical 

ystems. 
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ppendix A 

1. Lyapunov function 

Lyapunov analysis is widely used for assessing whether a non- 

inear dynamical system is stable. Lyapunov’s method for discrete- 

ime systems is "A system of the form ˆ x k +1 = f ( ̂  x k ) is globally 

symptotically stable at the origin if there exists a function V, re- 

erred to as the Lyapunov function , such that (1) V ( ̂  x eq ) = 0 and

 ( ̂  x k ) > 0 for all ˆ x k � = 0 , (2) � V ( ̂  x k ) = V ( ̂  x k +1 ) − V ( ̂  x k ) < 0 for all

ˆ  k � = 0 , and (3) V ( ̂  x k ) → ∞ as || ̂ x k || → ∞ ( Brogan, 1991 ).”

The application of Lyapunov analysis to Lure systems employs 

he Lyapunov function: 

 (x k ) = x̄ � k P ̄x k + 2 

n q ∑ 

n =1 

λi 

∫ q k,i 

0 

φi (σ ) d σ, (87) 

r some variation thereof, where x̄ k is the extended state vector 

¯
 k � 

[ 

x k 
p k 
q k 

] 

, (88) 

nd P is a positive definite matrix and λi are non-negative real 

umbers that serve as unknowns to be determined in the Lya- 

unov analysis. The Lyapunov function satisfies condition (1) by 

onstruction. Both p k and q k are functions of the state variable 

ector x k , and the above Lyapunov function is radially unbounded 

nd positive for all nonzero x k ∈ R 

n , which satisfies condition (2). 

s shown in the second term on the right-hand side of (87) , 

he Lyapunov equation is a linear function of the nonlinearities. 

hen deriving an algebraic condition for ensuring that condition 

3) holds, the latter terms in (87) result in a nonconvex set of in-

qualities, which are then convexified by applying the S-procedure 

 Boyd et al., 1994 ). The S-procedure introduces conservatism for 

ach term in the summation in (87) , which increases as the num- 

er of nonlinear terms increases ( Kim, 2009 ). 
13 
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